Publications by authors named "Martha Constantinou"

In this work, we perform a lattice QCD study of the intrinsic, rapidity-independent soft function within the framework of large momentum effective theory. The computation is carried out using a gauge ensemble of N_{f}=2+1+1 clover-improved twisted mass fermion. After applying an appropriate renormalization procedure and the removal of significant higher-twist contamination, we obtain the intrinsic soft function that is comparable to the one-loop perturbative result at large external momentum.

View Article and Find Full Text PDF

We present, for the first time, an ab initio calculation of the individual up, down, and strange quark helicity parton distribution functions for the proton. The calculation is performed within the twisted mass clover-improved fermion formulation of lattice QCD. The analysis is performed using one ensemble of dynamical up, down, strange, and charm quarks with a pion mass of 260 MeV.

View Article and Find Full Text PDF

In this article, we review recent lattice calculations on the -dependence of parton distributions, with the latter providing information on hadron structure. These calculations are based on matrix elements of boosted hadrons coupled to non-local operators and can be related to the standard, light-cone distribution functions via an appropriate factorization formalism. There is significant progress in several directions, including calculations of flavor-singlet parton distribution functions (PDFs), first calculations of generalized parton distributions (GPDs), as well as the implementation of some of the approaches for the transverse-momentum-dependent PDFs (TMD PDFs).

View Article and Find Full Text PDF

We present the first calculation of the x dependence of the proton generalized parton distributions (GPDs) within lattice QCD. Results are obtained for the isovector unpolarized and helicity GPDs. We compute the appropriate matrix elements of fast-moving protons coupled to nonlocal operators containing a Wilson line.

View Article and Find Full Text PDF

We extract parton distribution functions (PDFs) of the nucleon from lattice QCD using an ensemble of gauge field configurations simulated with light quark masses fixed to their physical values. Theoretical and algorithmic improvements that allow such a calculation include momentum smearing to reach large nucleon boosts with reduced statistical errors, nonperturbative renormalization, target mass corrections, and a novel modified matching of lattice QCD results to connect to what is extracted from experimental measurements. We give results on the unpolarized and helicity PDFs in the modified minimal subtraction scheme at a scale of 2 GeV and reproduce the main features of the experimentally determined quantities, showing an overlap for a range of Bjorken-x values.

View Article and Find Full Text PDF