Publications by authors named "Martha Alexander-Miller"

A number of studies have demonstrated the role of sex in regulating immune responses to vaccination. However, these findings have been limited to adults for both human and animal models. As a result, our understanding of the impact of sex on vaccine responses in the newborn is highly limited.

View Article and Find Full Text PDF
Article Synopsis
  • Subunit or inactivated vaccines are commonly used but often less effective than live vaccines, necessitating boosters and adjuvants for better immune responses.
  • Research has shown that directly linking adjuvants to antigens can enhance vaccine effectiveness, as seen in the development of an inactivated influenza A vaccine combined with the adjuvant resiquimod (R848).
  • The study found that varying the crosslinker used to connect R848 to the virus influenced how well the vaccine stimulated immune response, affecting cytokine production and antibody levels in both lab and mouse model experiments.
View Article and Find Full Text PDF

Objective: The objective of this study was to evaluate hemagglutinin stem-specific antibody response to the influenza vaccine during pregnancy and its transfer to the infant.

Methods: The authors assessed antibody titers among maternal participants and their paired neonate's cord blood (CB) using enzyme-linked immunoassay. Fifteen pregnant participants pre-2019 and post-2019 seasonal influenza vaccine were compared with 18 prenatally vaccinated participants with paired neonatal CB samples.

View Article and Find Full Text PDF

Background: Immune responses to COVID-19 mRNA vaccines have not been well characterized in frail older adults. We postulated that frailty is associated with impaired antibody and cellular mRNA vaccine responses.

Methods: We followed older adults in a retirement facility with longitudinal clinical and serological samples from the first Moderna mRNA-1273 vaccine dose starting in February 2021 through their 3rd (booster) vaccine dose.

View Article and Find Full Text PDF

Background: CD47 is an integral membrane protein that alters adaptive immunosurveillance when bound to the matricellular glycoprotein thrombospondin-1 (TSP1). We examined the impact of the CD47/TSP1 signaling axis on melanoma patient response to anti-PD-1 therapy due to alterations in T cell activation, proliferation, effector function, and bioenergetics.

Methods: A syngeneic B16 mouse melanoma model was performed to determine if targeting CD47 as monotherapy or in combination with anti-PD-1 impacted tumor burden.

View Article and Find Full Text PDF

The newborn immune system is characterized by diminished immune responses that leave infants vulnerable to virus-mediated disease and make vaccination more challenging. Optimal vaccination strategies for influenza A virus (IAV) in newborns should result in robust levels of protective antibodies, including those with broad reactivity to combat the variability in IAV strains across seasons. The stem region of the hemagglutinin (HA) molecule is a target of such antibodies.

View Article and Find Full Text PDF

Background: Immune responses to COVID-19 mRNA vaccines have not been well characterized in frail older adults. We postulated that frailty is associated with impaired antibody and cellular mRNA vaccine responses.

Methods: We followed older adults in a retirement facility with longitudinal clinical and serological samples from the first Moderna mRNA-1273 vaccine dose starting in February 2021 through their 3rd (booster) vaccine dose.

View Article and Find Full Text PDF

Elderly individuals are highly susceptible to developing severe outcomes as a result of influenza A virus (IAV) infection. This can be attributed to alterations that span the aged immune system, which also result in reduced responsiveness to the seasonal inactivated vaccine. Given the rapidly increasing number of individuals in this age group, it is imperative that we develop strategies that can better protect this population from IAV-associated disease.

View Article and Find Full Text PDF

Background: COVID-19 has disproportionately affected older adults. Frailty has been associated with impaired vaccine response in other vaccine types, but the impact of frailty on mRNA vaccine response is undefined.

Methods: Observational study of adults aged 55 and older from 1 U.

View Article and Find Full Text PDF

Introduction: The COVID-19 Community Research Partnership is a population-based longitudinal syndromic and sero-surveillance study. The study includes over 17,000 participants from six healthcare systems in North Carolina who submitted over 49,000 serology results. The purpose of this study is to use these serology data to estimate the cumulative proportion of the North Carolina population that has either been infected with SARS-CoV-2 or developed a measurable humoral response to vaccination.

View Article and Find Full Text PDF

Purpose: Immunotherapy with checkpoint inhibitors is improving the outcomes of several cancers. However, only a subset of patients respond. Therefore, predictive biomarkers are critically needed to guide treatment decisions and develop approaches to the treatment of therapeutic resistance.

View Article and Find Full Text PDF

The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging.

View Article and Find Full Text PDF

Individuals younger than 6 months of age are at significant risk from influenza virus infection; however, there is currently no vaccine approved for this age group. Influenza virus neuraminidase (NA) has emerged as a potential additional target for vaccine strategies. In this study, we sought to understand the ability of newborns to mount an antibody response to NA.

View Article and Find Full Text PDF

Eliciting broadly protective antibodies is a critical goal for the development of more effective vaccines against influenza. Optimizing protection is of particular importance in newborns, who are highly vulnerable to severe disease following infection. An effective vaccination strategy for this population must surmount the challenges associated with the neonatal immune system as well as mitigate the inherent immune subdominance of conserved influenza virus epitopes, responses to which can provide broader protection.

View Article and Find Full Text PDF

KRAS is a key oncogenic driver in lung adenocarcinoma (LUAD). Chromatin-remodeling gene SMARCA4 is comutated with KRAS in LUAD; however, the impact of SMARCA4 mutations on clinical outcome has not been adequately established. This study sought to shed light on the clinical significance of SMARCA4 mutations in LUAD.

View Article and Find Full Text PDF

Newborns are at significantly increased risk of severe disease following infection with influenza virus. This is the collective result of their naïve status, altered immune responsiveness, and the lack of a vaccine that is effective in these individuals. Numerous studies have revealed impairments in both the innate and adaptive arms of the immune system of newborns.

View Article and Find Full Text PDF

The initial months of life reflect an extremely challenging time for newborns as a naïve immune system is bombarded with a large array of pathogens, commensals, and other foreign entities. In many instances, the immune response of young infants is dampened or altered, resulting in increased susceptibility and disease following infection. This is the result of both qualitative and quantitative changes in the response of multiple cell types across the immune system.

View Article and Find Full Text PDF

T regulatory cells (Tregs) play a critical role in controlling the immune response, often limiting pathogen-specific cells to curb immune-mediated damage. Studies in human infants have reported an increased representation of Tregs in these individuals. However, how these cells differ from those in adults at various sites and how they respond to activation signals is relatively unknown.

View Article and Find Full Text PDF

The ability of T cells to sense and respond to environmental cues by altering their functional capabilities is critical for a safe and optimally protective immune response. One of the important properties that contributes to this goal is the activation set-point of the T cell. Here we report a new pathway through which TCR transgenic OT-I CD8 T cells can self-tune their activation threshold.

View Article and Find Full Text PDF

The specificity of antibodies (Abs) generated against influenza A virus (IAV) infection can significantly alter protection and viral clearance. At present, the impact of age upon this process is relatively unexplored. Here, we evaluated the Ab response in newborn and adult African green monkeys following infection with IAV using a strain that enables us to determine the immunodominance (ID) hierarchy of the Ab response to hemagglutinin (HA), the principal target of protective Abs.

View Article and Find Full Text PDF

Spontaneous intracerebral hemorrhage (ICH) is a catastrophic illness causing significant morbidity and mortality. Despite advances in surgical technique addressing primary brain injury caused by ICH, little progress has been made treating the subsequent inflammatory cascade. Pre-clinical studies have made advancements identifying components of neuroinflammation, including microglia, astrocytes, and T lymphocytes.

View Article and Find Full Text PDF

Background: For cancer patients, rates of influenza-associated hospitalization and death are 4 times greater than that of the general population. Previously, we reported reduced immunogenicity to the standard-dose influenza vaccine in patients with central nervous system malignancy. In other poorly responding populations (eg, elderly patients), high-dose vaccination has improved efficacy and immunogenicity.

View Article and Find Full Text PDF

Tumor-infiltrating myeloid cells are the most abundant leukocyte population within tumors. Molecular cues from the tumor microenvironment promote the differentiation of immature myeloid cells toward an immunosuppressive phenotype. However, the in situ dynamics of the transcriptional reprogramming underlying this process are poorly understood.

View Article and Find Full Text PDF

Resistance and tolerance to infection are two universal fitness and survival strategies used by inflammation and immunity in organisms and cells to guard homeostasis. During sepsis, however, both strategies fail, and animal and human victims often die from combined innate and adaptive immune suppression with persistent bacterial and viral infections. NAD-sensing nuclear sirtuin1 (SIRT1) epigenetically guards immune and metabolic homeostasis during sepsis.

View Article and Find Full Text PDF

Inactivated influenza vaccines are not approved for use in infants less than 6 months of age due to poor immunogenicity in that population. While the live attenuated influenza vaccine has the potential to be more immunogenic, it is not an option for infants and other vulnerable populations, including the elderly and immunocompromised individuals due to safety concerns. In an effort to improve the immunogenicity of the inactivated vaccine for use in vulnerable populations, we have used an approach of chemically crosslinking the Toll-like receptor (TLR) 7/8 agonist R848 directly to virus particles.

View Article and Find Full Text PDF