Publications by authors named "Marten Wikstrom"

We present a brief review of the mitochondrial respiratory chain with emphasis on complexes I, III and IV, which contribute to the generation of protonmotive force across the inner mitochondrial membrane, and drive the synthesis of ATP by the process called oxidative phosphorylation. The basic structural and functional details of these complexes are discussed. In addition, we briefly review the information on the so-called supercomplexes, aggregates of complexes I-IV, and summarize basic physiological aspects of cell respiration.

View Article and Find Full Text PDF

Complex I converts oxidoreduction energy into a proton electrochemical gradient across the inner mitochondrial or bacterial cell membrane. This gradient is the primary source of energy for aerobic synthesis of ATP. Oxidation of reduced nicotinamide adenine dinucleotide (NADH) by ubiquinone (Q) yields NAD and ubiquinol (QH ), which is tightly coupled to translocation of four protons from the negatively to the positively charged side of the membrane.

View Article and Find Full Text PDF

Aerobic life is powered by membrane-bound enzymes that catalyze the transfer of electrons to oxygen and protons across a biological membrane. Cytochrome oxidase (CO) functions as a terminal electron acceptor in mitochondrial and bacterial respiratory chains, driving cellular respiration and transducing the free energy from O reduction into proton pumping. Here we show that CO creates orientated electric fields around a nonpolar cavity next to the active site, establishing a molecular switch that directs the protons along distinct pathways.

View Article and Find Full Text PDF

Cytochrome ba from Thermus thermophilus belongs to the B family of heme-copper oxidases and pumps protons across the membrane with an as yet unknown mechanism. The K channel of the A family heme-copper oxidases provides delivery of a substrate proton from the internal water phase to the binuclear heme-copper center (BNC) during the reductive phase of the catalytic cycle, while the D channel is responsible for transferring both substrate and pumped protons. By contrast, in the B family oxidases there is no D-channel and the structural equivalent of the K channel seems to be responsible for the transfer of both categories of protons.

View Article and Find Full Text PDF

Bacteria power their energy metabolism using membrane-bound respiratory enzymes that capture chemical energy and transduce it by pumping protons or Na ions across their cell membranes. Recent breakthroughs in molecular bioenergetics have elucidated the architecture and function of many bacterial respiratory enzymes, although key mechanistic principles remain debated. In this Review, we present an overview of the structure, function and bioenergetic principles of modular bacterial respiratory chains and discuss their differences from the eukaryotic counterparts.

View Article and Find Full Text PDF

The protonmotive mitochondrial respiratory chain, comprising complexes I, III and IV, transduces free energy of the electron transfer reactions to an electrochemical proton gradient across the inner mitochondrial membrane. This gradient is used to drive synthesis of ATP and ion and metabolite transport. The efficiency of energy conversion is of interest from a physiological point of view, since the energy transduction mechanisms differ fundamentally between the three complexes.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals a significant fivefold difference in survival among Bcs1l mice with respiratory chain complex III (CIII) deficiency, linked to a specific mitochondrial DNA mutation (m.G14904A) in the cytochrome b subunit.
  • Researchers demonstrated that this mutation further reduces CIII activity to critical levels, leading to decreased lifespans in those mice.
  • The findings illustrate a unique interaction between mitochondrial and nuclear genes, emphasizing the impact of mitochondrial DNA variations on the severity of mitochondrial diseases.
View Article and Find Full Text PDF

Complex I couples the free energy released from quinone (Q) reduction to pump protons across the biological membrane in the respiratory chains of mitochondria and many bacteria. The Q reduction site is separated by a large distance from the proton-pumping membrane domain. To address the molecular mechanism of this long-range proton-electron coupling, we perform here full atomistic molecular dynamics simulations, free energy calculations, and continuum electrostatics calculations on complex I from We show that the dynamics of Q is redox-state-dependent, and that quinol, QH, moves out of its reduction site and into a site in the Q tunnel that is occupied by a Q analog in a crystal structure of We also identify a second Q-binding site near the opening of the Q tunnel in the membrane domain, where the Q headgroup forms strong interactions with a cluster of aromatic and charged residues, while the Q tail resides in the lipid membrane.

View Article and Find Full Text PDF

Cytochrome c oxidase is a remarkable energy transducer that seems to work almost purely by Coulombic principles without the need for significant protein conformational changes. In recent years it has become possible to follow key partial reactions of the catalytic cycle in real time, both with respect to electron and proton movements. These experiments have largely set the stage for the proton pump mechanism.

View Article and Find Full Text PDF

This review focuses on the type A cytochrome c oxidases (C cO), which are found in all mitochondria and also in several aerobic bacteria. C cO catalyzes the respiratory reduction of dioxygen (O) to water by an intriguing mechanism, the details of which are fairly well understood today as a result of research for over four decades. Perhaps even more intriguingly, the membrane-bound C cO couples the O reduction chemistry to translocation of protons across the membrane, thus contributing to generation of the electrochemical proton gradient that is used to drive the synthesis of ATP as catalyzed by the rotary ATP synthase in the same membrane.

View Article and Find Full Text PDF

Two electrogenic phases with characteristic times of ~14μs and ~290μs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between Cu and heme b.

View Article and Find Full Text PDF

Cytochrome oxidase (CO) catalyzes the reduction of oxygen to water and uses the released free energy to pump protons against the transmembrane proton gradient. To better understand the proton-pumping mechanism of the wild-type (WT) CO, much attention has been given to the mutation of amino acid residues along the proton translocating D-channel that impair, and sometimes decouple, proton pumping from the chemical catalysis. Although their influence has been clearly demonstrated experimentally, the underlying molecular mechanisms of these mutants remain unknown.

View Article and Find Full Text PDF

Cytochrome c oxidase (CcO) reduces oxygen to water and uses the released free energy to pump protons across the membrane. We have used multiscale reactive molecular dynamics simulations to explicitly characterize (with free-energy profiles and calculated rates) the internal proton transport events that enable proton pumping during first steps of oxidation of the fully reduced enzyme. Our results show that proton transport from amino acid residue E286 to both the pump loading site (PLS) and to the binuclear center (BNC) are thermodynamically driven by electron transfer from heme a to the BNC, but that the former (i.

View Article and Find Full Text PDF

The active site of cytochrome c oxidase (CcO) comprises an oxygen-binding heme, a nearby copper ion (CuB), and a tyrosine residue that is covalently linked to one of the histidine ligands of CuB. Two proton-conducting pathways are observed in CcO, namely the D- and the K-channels, which are used to transfer protons either to the active site of oxygen reduction (substrate protons) or for pumping. Proton transfer through the D-channel is very fast, and its role in efficient transfer of both substrate and pumped protons is well established.

View Article and Find Full Text PDF

Molecular modeling and molecular dynamics simulations play an important role in the functional characterization of complex I. With its large size and complicated function, linking quinone reduction to proton pumping across a membrane, complex I poses unique modeling challenges. Nonetheless, simulations have already helped in the identification of possible proton transfer pathways.

View Article and Find Full Text PDF

Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue.

View Article and Find Full Text PDF

The terminal respiratory enzyme cytochrome c oxidase (CcO) reduces molecular oxygen to water, and pumps protons across the inner mitochondrial membrane, or the plasma membrane of bacteria. A two-subunit CcO harbors all the elements necessary for oxygen reduction and proton pumping. However, it rapidly undergoes turnover-induced irreversible damage, which is effectively prevented by the presence of subunit III and its tightly bound lipids.

View Article and Find Full Text PDF

C-type heme-copper oxidases terminate the respiratory chain in many pathogenic bacteria, and will encounter elevated concentrations of NO produced by the immune defense of the host. Thus, a decreased sensitivity to NO in C-type oxidases would increase the survival of these pathogens. Here we have compared the inhibitory effect of NO in C-type oxidases to that in the mitochondrial A-type.

View Article and Find Full Text PDF

Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradient, which drives the synthesis of ATP.

View Article and Find Full Text PDF

The heme-copper oxidases (HCOs) catalyze the reduction of O2 to water, and couple the free energy to proton pumping across the membrane. HCOs are divided into three sub-classes, A, B and C, whose order of emergence in evolution has been controversial. Here we have analyzed recent structural and functional data on HCOs and their homologues, the nitric oxide reductases (NORs).

View Article and Find Full Text PDF

Complex I serves as the primary electron entry point into the mitochondrial and bacterial respiratory chains. It catalyzes the reduction of quinones by electron transfer from NADH, and couples this exergonic reaction to the translocation of protons against an electrochemical proton gradient. The membrane domain of the enzyme extends ∼180 Å from the site of quinone reduction to the most distant proton pathway.

View Article and Find Full Text PDF

The heme-copper oxidases may be divided into three categories, A, B, and C, which include cytochrome c and quinol-oxidising enzymes. All three types are known to be proton pumps and are found in prokaryotes, whereas eukaryotes only contain A-type cytochrome c oxidase in their inner mitochondrial membrane. However, the bacterial B- and C-type enzymes have often been reported to pump protons with an H(+)/e(-) ratio of only one half of the unit stoichiometry in the A-type enzyme.

View Article and Find Full Text PDF

The exploration of the redox chemistry of bound ubiquinone during catalysis is a prerequisite for the understanding of the mechanism by which Complex I (nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase) transduces redox energy into an electrochemical proton gradient. Studies of redox dependent changes in the spectrum of Complex I from Escherichia coli in the mid- and near-ultraviolet (UV) and visible areas were performed to identify the spectral contribution, and to determine the redox properties, of the tightly bound ubiquinone. A very low midpoint redox potential (<-300mV) was found for the bound ubiquinone, more than 400mV lower than when dissolved in a phospholipid membrane.

View Article and Find Full Text PDF