Chimeric antigen receptor (CAR) T cell technology has ushered in a new era of immunotherapy, enabling the targeting of a broad range of surface antigens, surpassing the limitations of traditional T cell epitopes. Despite the wide range of non-protein tumor-associated antigens, the advancement in crafting CAR T cells for these targets has been limited. Owing to an evolutionary defect in the CMP-Neu5Ac hydroxylase (CMAH) that abolishes the synthesis of CMP-Neu5Gc from CMP-Neu5Ac, Neu5Gc is generally absent in human tissues.
View Article and Find Full Text PDFCD4+ T cells may induce potent antitumor immune responses through interaction with antigen-presenting cells within the tumor microenvironment. Using a murine model of multiple myeloma, we demonstrated that adoptive transfer of idiotype-specific CD4+ T cells may elicit curative responses against established multifocal myeloma in bone marrow. This finding indicates that the myeloma bone marrow niche contains antigen-presenting cells that may be rendered tumoricidal.
View Article and Find Full Text PDFThe development of immune checkpoint inhibitors represents a major breakthrough in cancer therapy. Nevertheless, a substantial number of patients fail to respond to checkpoint pathway blockade. Evidence for WNT/β-catenin signaling-mediated immune evasion is found in a subset of cancers including melanoma.
View Article and Find Full Text PDFCancer Immunol Immunother
November 2019
It is well recognized that CD4 T cells may play an important role in immunosurveillance and immunotherapy against cancer. However, the details of how these cells recognize and eliminate the tumor cells remain incompletely understood. For the past 25 years, we have focused on how CD4 T cells reject multiple myeloma cells in a murine model (MOPC315).
View Article and Find Full Text PDFEnhancing the germinal center (GC) reaction is a prime objective in vaccine development. Targeting of antigen to MHCII on APCs has previously been shown to increase antibody responses, but the underlying mechanism has been unclear. We have here investigated the GC reaction after targeting antigen to MHCII in (i) a defined model with T and B cells of known specificity using adjuvant-free vaccine proteins, and (ii) an infectious disease model using a DNA vaccine.
View Article and Find Full Text PDFCD4 T cells can induce potent anti-tumor immune responses. Due to the lack of MHC class II expression in most cancer cells, antigen recognition occurs indirectly uptake and presentation on tumor-infiltrating antigen-presenting cells (APCs). Activation of the APCs can induce tumor rejection, but the mechanisms underlying tumor killing by such cells have not been established.
View Article and Find Full Text PDFTumor-specific CD4 T cells have been shown to mediate efficient antitumor immune responses against cancer. Such responses can occur through direct binding to MHC class II (MHC II)-expressing tumor cells, or indirectly via activation of professional antigen-presenting cells (APC) that take up and present the tumor antigen. We have previously shown that CD4 T cells reactive against an epitope within the Ig light chain variable region of a murine B-cell lymphoma can reject established tumors.
View Article and Find Full Text PDFAdoptive cell therapy (ACT) trials to date have focused on transfer of autologous tumor-specific cytotoxic CD8 T cells; however, the potential of CD4 T helper (Th) cells for ACT is gaining interest. While encouraging results have been reported with IFNγ-producing Th1 cells, tumor-specific Th2 cells have been largely neglected for ACT due to their reported tumor-promoting properties. In this study, we tested the efficacy of idiotype-specific Th2 cells for the treatment of mice with MHC class II-negative myeloma.
View Article and Find Full Text PDFCD4+ T cells have been shown to reject tumor cells with no detectable expression of major histocompatibility complex class II (MHC II). However, under certain circumstances, induction of ectopic MHC II expression on tumor cells has been reported.To confirm that CD4+ T cell-mediated anti-tumor immunity can be successful in the complete absence of antigen display on the tumor cells themselves, we eliminated MHC II on tumor cells using CRISPR/Cas9.
View Article and Find Full Text PDFTumors cells can escape cytotoxic CD8+ T cells by preventing MHC I display of tumor antigens. It is unknown how tumors evade CD4+ T-cell responses, but because many tumor cells lack MHC II expression, novel mechanisms would be required. We have investigated this issue in a model in which MHC II(NEG) myeloma cells secrete a monoclonal Ig containing a V region L chain (VL) epitope recognized by CD4+ T cells.
View Article and Find Full Text PDFCD4(+) T cells contribute to tumor eradication, even in the absence of CD8(+) T cells. Cytotoxic CD4(+) T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4(+) T cells can indirectly eliminate tumor cells that lack MHC class II expression.
View Article and Find Full Text PDF