T cell responses to symbionts in the intestine drive tolerance or inflammation depending on the genetic background of the host. These symbionts in the gut sense the available nutrients and adapt their metabolic programs to use these nutrients efficiently. Here, we ask whether diet can alter the expression of a bacterial antigen to modulate adaptive immune responses.
View Article and Find Full Text PDFMicrobes interact with the host immune system via several potential mechanisms. One essential step for each mechanism is the method by which intestinal microbes or their antigens access specific host immune cells. Using genetically susceptible mice (dnKO) that develop spontaneous, fulminant colitis, triggered by Bacteroides thetaiotaomicron (B.
View Article and Find Full Text PDFFetal surgery is a promising strategy to treat fetuses with severe congenital abnormalities but its clinical applications are often limited by preterm labor. In normal pregnancy, multiple mechanisms protect the semi-allogeneic fetus from attack by maternal T cells. Maternal microchimerism (the presence of maternal cells in the fetus) has been suggested to be one mechanism of maternal-fetal tolerance in that it exposes the fetus to non-inherited maternal antigens and leads to the generation of fetal regulatory T cells that can suppress a maternal T cell response.
View Article and Find Full Text PDFFetal interventions to diagnose and treat congenital anomalies are growing in popularity but often lead to preterm labor. The possible contribution of the maternal adaptive immune system to postsurgical pregnancy complications has not been explored. We recently showed that fetal intervention in mice increases maternal T cell trafficking into the fetus and hypothesized that this process also may lead to increased maternal T cell recognition of the foreign conceptus and subsequent breakdown in maternal-fetal tolerance.
View Article and Find Full Text PDFIn utero hematopoietic cell transplantation (IUHCTx) is a promising strategy for the treatment of congenital stem cell disorders. Despite the purported immaturity of the fetal immune system, the clinical success of this strategy has been limited by poor engraftment of transplanted cells. The fetal host immune system is thought to be the major barrier to achieving successful IUHCTx.
View Article and Find Full Text PDFThe transplantation of stem cells and viruses in utero has tremendous potential for treating congenital disorders in the human fetus. For example, in utero transplantation (IUT) of hematopoietic stem cells has been used to successfully treat patients with severe combined immunodeficiency. In several other conditions, however, IUT has been attempted without success.
View Article and Find Full Text PDFTransplantation of allogeneic stem cells into the early gestational fetus, a treatment termed in utero hematopoietic cell transplantation (IUHCTx), could potentially overcome the limitations of bone marrow transplants, including graft rejection and the chronic immunosuppression required to prevent rejection. However, clinical use of IUHCTx has been hampered by poor engraftment, possibly due to a host immune response against the graft. Since the fetal immune system is relatively immature, we hypothesized that maternal cells trafficking into the fetus may pose the true barrier to effective IUHCTx.
View Article and Find Full Text PDFBackground: N-methyl-D-aspartate (NMDA) receptor open channel blockers phencyclidine (PCP) and dizocilpine (MK-801) elicit schizophrenia-like symptoms in humans and in animal models. Group II metabotropic glutamate receptor agonists reverse the behavioral effects of PCP and MK-801 in animal models. N-acetylaspartylglutamate (NAAG), the third most prevalent neurotransmitter in the mammalian nervous system, is a selective group II metabotropic glutamate receptor agonist.
View Article and Find Full Text PDFRhabdomyosarcoma is a childhood tumor of the skeletal muscle lineage in which cells display defects in both biochemical and morphological aspects of differentiation. The immunoglobulin superfamily members CDO and BOC are components of a cell surface receptor that positively regulates myogenesis in vitro. Expression of Cdo and Boc in myoblast cell lines is downregulated by the ras oncogene, and forced re-expression of either Cdo or Boc can override ras-induced inhibition of myogenic differentiation [Kang et al.
View Article and Find Full Text PDF