Publications by authors named "Marta Villarroel"

The retinal pigment epithelium (RPE) is a specialized epithelium lying in the interface between the -neural retina and the choriocapillaris where it forms the outer blood-retinal barrier (BRB). The tight junctions (TJ)s expressed in the outer BRB control fluids and solutes that enter the retina and this sealing function, which is essential for the retinal homeostasis, is impaired in diabetic retinopathy. In this -chapter, we provide the methods to explore the function of the RPE barrier by measuring Transepithelial electrical resistance (TER) and paracellular permeability to dextran in cultures of ARPE-19 cells (an immortalized RPE cell line).

View Article and Find Full Text PDF

Purpose: To determine whether fenofibric acid (FA) reduces high glucose (HG)-induced basement membrane component overexpression and hyperpermeability in human retinal pigment epithelial (RPE) cells.

Methods: Retinal pigment epithelial cells (ARPE-19) were cultured for 18 days in normal glucose (5 mM) or HG (25 mM) medium and studied for the effects of FA on fibronectin (FN) and collagen IV (Coll IV) expression. During last 3 days of the experiment, 100 μM FA was added to cells grown in HG medium or in HG medium plus IL-1β (HG + IL-1β) to mimic, at least in part, the inflammatory aspect of the diabetic milieu.

View Article and Find Full Text PDF

The outer blood-retinal barrier is formed by retinal pigment epithelial (RPE) cells and its disruption significantly contributes to the development of diabetic macular edema (DME). The aim of the study was to explore whether erythropoietin (Epo) has beneficial effects on the barrier function of human RPE cells and the main downstream pathways involved. ARPE-19 cells were cultured in standard conditions and under conditions leading to the disruption of the monolayer [25 mmol/L D-glucose plus IL-1β (10 ng/mL)].

View Article and Find Full Text PDF

Diabetic retinopathy (DR) has been classically considered to be a microcirculatory disease of the retina caused by the deleterious metabolic effects of hyperglycemia per se and the metabolic pathways triggered by hyperglycemia. However, retinal neurodegeneration is already present before any microcirculatory abnormalities can be detected in ophthalmoscopic examination. In other words, retinal neurodegeneration is an early event in the pathogenesis of DR which predates and participates in the microcirculatory abnormalities that occur in DR.

View Article and Find Full Text PDF

Background: To evaluate whether intensive insulin therapy leads to changes in macular biometrics (volume and thickness) in newly diagnosed diabetic patients with acute hyperglycaemia and its relationship with serum levels of vascular endothelial growth factor (VEGF) and its soluble receptor (sFlt-1).

Methods: Twenty-six newly diagnosed diabetic patients admitted to our hospital to initiate intensive insulin treatment were prospectively recruited. Examinations were performed on admission (day 1) and during follow-up (days 3, 10 and 21) and included a questionnaire regarding the presence of blurred vision, standardized refraction measurements and optical coherence tomography.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) is an specialized epithelium lying in the interface between the neural retina and the choriocapillaris where it forms the outer blood-retinal barrier (BRB). The main functions of the RPE are the following: (1) transport of nutrients, ions, and water, (2) absorption of light and protection against photooxidation, (3) reisomerization of all-trans-retinal into 11-cis-retinal, which is crucial for the visual cycle, (4) phagocytosis of shed photoreceptor membranes, and (5) secretion of essential factors for the structural integrity of the retina. An overview of these functions will be given.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to compare intravitreous levels of lipopolysaccharide-binding protein and soluble CD14 (sCD14) between patients with proliferative diabetic retinopathy (PDR) and nondiabetic subjects.

Methods: This study included 19 consecutive Type 2 diabetic patients with PDR in whom a vitrectomy was performed. Sixteen vitreous humors from nondiabetic patients matched by age, with idiopathic macular holes, were selected from our vitreous bank and used as a control group.

View Article and Find Full Text PDF

There is no information on the direct effect of high glucose concentrations on the barrier function of retinal pigment epithelium (RPE). The aim of this study was to explore the effect of high glucose concentrations on the permeability and the expression of tight junction proteins (occludin, zonula occludens-1 (ZO-1) and claudin-1) in a human RPE line (ARPE-19). For this purpose, ARPE-19 cells were cultured for 3 weeks in a medium containing 5.

View Article and Find Full Text PDF

Introduction: One of the early features of diabetic retinopathy is the breakdown of the blood-retinal barrier (BRB) due to disruption of the tight junctions. Whereas impairment of the proteins involved in the disruption of the tight junctions of the internal BRB has been extensively studied, there is no information on the direct effect of high glucose concentration on the barrier function of the outer blood-retinal barrier (formed by the retinal pigment epithelium [RPE]). The aim of this study was to explore the effect of high glucose concentration on the expression of tight junction proteins (occludin, zonula occludens-1 [ZO-1] and claudin-1) in a human RPE line under two distinct glucose concentrations.

View Article and Find Full Text PDF