Purpose: This study aimed to determine the role of Wnt pathway in mouse embryonic stem cell (mESC) derivation from single blastomeres isolated from eight-cell embryos and in the pluripotency features of the mESC established.
Methods: Wnt activator CHIR99021, Wnt inhibitor IWR-1-endo, and MEK inhibitor PD0325901 were used alone or in combination during ESC derivation and maintenance from single blastomeres biopsied from eight-cell embryos. Alkaline phosphatase activity, FGF5 levels, expression of key pluripotency genes, and chimera formation were assessed to determine the pluripotency state of the mESC lines.
The past decade has seen a renewed appreciation of the central importance of cellular lineages to many questions in biology (especially organogenesis, stem cells and tumor biology). This has been driven in part by a renaissance in genetic clonal-labeling techniques. Recent approaches are based on accelerated mutation of DNA sequences, which can then be sequenced from individual cells to re-create a 'phylogenetic' tree of cell lineage.
View Article and Find Full Text PDFPurpose: To assess the role of the genetic background, the culture medium supplements, and the presence of modulators of signaling pathways on mouse embryonic stem cell derivation from single blastomeres from 8-cell embryos.
Methods: Mice from permissive and non-permissive genetic backgrounds, different culture media supplements, knockout serum replacement (KSR) and N2B27, and the presence or absence of 2i treatment were used to derive mouse embryonic stem cells (mESC) from single blastomeres isolated from 8-cell embryos and from control embryos at the blastocyst stage. After the sixth passage, the putative mESC were analyzed by immunofluorescence to assess their pluripotency and, after in vitro differentiation induction, their ability to differentiate into derivatives of the three primary germ layers.
Mouse embryonic stem cell (mESC) derivation is the process by which pluripotent cell lines are established from preimplantation embryos. These lines retain the ability to either self-renew or differentiate under specific conditions. Due to these properties, mESC are a useful tool in regenerative medicine, disease modeling, and tissue engineering studies.
View Article and Find Full Text PDFBackground: Fascioliasis and paragonimiasis are widespread foodborne trematode diseases, affecting millions of people in more than 75 countries. The treatment of choice for these parasitic diseases is based on triclabendazole, a benzimidazole derivative which has been suggested as a promising drug to treat pregnant women and children. However, at the moment, this drug is not approved for human use in most countries.
View Article and Find Full Text PDFObjective: To study whether the telomere structure of germ cells from idiopathic infertile men is altered and if this impairment is influenced by meiotic recombination and telomere length.
Design: We performed a detailed analysis of both telomeric repeat-containing RNA (TERRA) and telomerase distribution in testis cell spreads by combining immunofluorescence and RNA fluorescent in situ hybridization. In addition we analyzed meiotic recombination between homologous chromosomes by immunofluorescence and telomere length by quantitative fluorescent in situ hybridization.
Telomeres are ribonucleoprotein structures at the end of chromosomes composed of telomeric DNA, specific-binding proteins, and noncoding RNA (TERRA). Despite their importance in preventing chromosome instability, little is known about the cross talk between these three elements during the formation of the germ line. Here, we provide evidence that both TERRA and the telomerase enzymatic subunit (TERT) are components of telomeres in mammalian germ cells.
View Article and Find Full Text PDF