Publications by authors named "Marta Veses-Garcia"

Isothermal microcalorimetry (IMC) is a potent analytical method for the real-time assessment of microbial metabolic activity, which serves as an indicator of microbial viability. This approach is highly relevant to the fields of probiotics and Live Biotherapeutic Products (LBPs), offering insights into microbial viability and growth kinetics. One important characteristic of IMC is its ability to measure microbial metabolic activity separately from cellular enumeration.

View Article and Find Full Text PDF

Shiga toxin-encoding bacteriophages transfer Shiga toxin genes to Escherichia coli and are responsible for the emergence of pathogenic bacterial strains that cause severe foodborne human diseases. Gene vb_24B_21 is the most highly conserved gene across sequenced Shiga bacteriophages. Protein vb_24B_21 (also termed 933Wp42 and NanS-p) is a carbohydrate esterase with homology to the E.

View Article and Find Full Text PDF

Achieving fast antimicrobial susceptibility results is a primary goal in the fight against antimicrobial resistance. Standard antibiotic susceptibility testing (AST) takes, however, at least a day from patient sample to susceptibility profile. Here, we developed and clinically validated a rapid phenotypic AST based on a miniaturized nanotiter plate, the nanowell slide, that holds 672 wells in a 500 nl format for bacterial cultivation.

View Article and Find Full Text PDF

Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E.

View Article and Find Full Text PDF

Background: Shigatoxigenic E. coli are a global and emerging health concern. Shiga toxin, Stx, is encoded on the genome of temperate, lambdoid Stx phages.

View Article and Find Full Text PDF