Apart from well-defined factors in neuronal cells, only a few reports consider that the variability of sporadic amyotrophic lateral sclerosis (ALS) progression can depend on less-defined contributions from glia and blood vessels. In this study we use an expression-weighted cell-type enrichment method to infer cell activity in spinal cord samples from patients with sporadic ALS and mouse models of this disease. Here we report that patients with sporadic ALS present cell activity patterns consistent with two mouse models in which enrichments of vascular cell genes preceded microglial response.
View Article and Find Full Text PDFPreclinical trials of cancer drugs in animal models are important for drug development. The Rip1Tag2 (RT2) transgenic mouse, a model of pancreatic neuroendocrine tumours (PNET), has provided immense knowledge about PNET biology, although tumour progression occurs in a location inaccessible for real-time monitoring. To overcome this hurdle we have developed a novel platform for intravital 3D imaging of RT2 tumours to facilitate real-time studies of cancer progression.
View Article and Find Full Text PDFObjective: Activation of endothelial β-catenin signaling by neural cell-derived Norrin or Wnt ligands is vital for the vascularization of the retina and brain. Mutations in members of the Norrin/β-catenin pathway contribute to inherited blinding disorders because of defective vascular development and dysfunctional blood-retina barrier. Despite a vital role for endothelial β-catenin signaling in central nervous system health and disease, its contribution to central nervous system angiogenesis and its interactions with downstream signaling cascades remains incompletely understood.
View Article and Find Full Text PDFObjective- The Wnt/β-catenin pathway orchestrates development of the blood-brain barrier, but the downstream mechanisms involved at different developmental windows and in different central nervous system (CNS) tissues have remained elusive. Approach and Results- Here, we create a new mouse model allowing spatiotemporal investigations of Wnt/β-catenin signaling by induced overexpression of Axin1, an inhibitor of β-catenin signaling, specifically in endothelial cells ( Axin1 - ). AOE (Axin1 overexpression) in Axin1 - mice at stages following the initial vascular invasion of the CNS did not impair angiogenesis but led to premature vascular regression followed by progressive dilation and inhibition of vascular maturation resulting in forebrain-specific hemorrhage 4 days post-AOE.
View Article and Find Full Text PDF