Biotic and abiotic stress lead to elevated levels of jasmonic acid (JA) and its derivatives and activation of the biosynthesis of nicotine and related pyridine alkaloids in cultivated tobacco (Nicotiana tabacum L.). Among the JA-responsive genes is NtPMT1a, encoding putrescine N-methyl transferase, a key regulatory enzyme in nicotine formation.
View Article and Find Full Text PDFTobacco (Nicotiana tabacum) is a member of the Solanaceae, one of the agronomically most important groups of flowering plants. We have performed an in silico analysis of 1.15 million gene-space sequence reads from the tobacco nuclear genome and report the detailed analysis of more than 2,500 tobacco transcription factors (TFs).
View Article and Find Full Text PDFBackground: Cowpea, Vigna unguiculata (L.) Walp., is one of the most important food and forage legumes in the semi-arid tropics because of its drought tolerance and ability to grow on poor quality soils.
View Article and Find Full Text PDFBackground: Regulation of gene expression at the level of transcription is a major control point in many biological processes. Transcription factors (TFs) can activate and/or repress the transcriptional rate of target genes and vascular plant genomes devote approximately 7% of their coding capacity to TFs. Global analysis of TFs has only been performed for three complete higher plant genomes - Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa) and rice (Oryza sativa).
View Article and Find Full Text PDF