The highly diverse Numb-associated kinase (NAK) family has been linked to broad cellular functions including receptor-mediated endocytosis, Notch pathway modulation, osteoblast differentiation, and dendrite morphogenesis. Consequently, NAK kinases play a key role in a diverse range of diseases from Parkinson's and prostate cancer to HIV. Due to the plasticity of this kinase family, NAK kinases are often inhibited by approved or investigational drugs and have been associated with side effects, but they are also potential drug targets.
View Article and Find Full Text PDFDespite the success of protein kinase inhibitors as approved therapeutics, drug discovery has focused on a small subset of kinase targets. Here we provide a thorough characterization of the Published Kinase Inhibitor Set (PKIS), a set of 367 small-molecule ATP-competitive kinase inhibitors that was recently made freely available with the aim of expanding research in this field and as an experiment in open-source target validation. We screen the set in activity assays with 224 recombinant kinases and 24 G protein-coupled receptors and in cellular assays of cancer cell proliferation and angiogenesis.
View Article and Find Full Text PDFSelective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson's disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity.
View Article and Find Full Text PDFThe MO25 scaffolding protein operates as critical regulator of a number of STE20 family protein kinases (e.g. MST and SPAK isoforms) as well as pseudokinases (e.
View Article and Find Full Text PDF