Sensors (Basel)
December 2022
This paper proposes a novel method for the calibration of a stereo camera system used to reconstruct 3D scenes. An error in the pitch angle of the cameras causes the reconstructed scene to exhibit some distortion with respect to the real scene. To do the calibration procedure, whose purpose is to eliminate or at least minimize said distortion, machine learning techniques have been used, and more specifically, regression algorithms.
View Article and Find Full Text PDFU-V disparity is a technique that is commonly used to detect obstacles in 3D scenes, modeling them as a set of vertical planes. In this paper, the authors describe the general lines of a method based on this technique for fully reconstructing 3D scenes, and conduct an analytical study of its performance and sensitivity to errors in the pitch angle of the stereoscopic vision system. The equations of the planes calculated for a given error in this angle yield the deviation with respect to the ideal planes (with a zero error in the angle) for a large test set consisting of planes with different orientations, which is represented graphically to analyze the method's qualitative and quantitative performance.
View Article and Find Full Text PDFSensors (Basel)
September 2012
The contribution of this paper is a technique that in certain circumstances allows one to avoid the removal of dynamic shadows in the visible spectrum making use of images in the infrared spectrum. This technique emerged from a real problem concerning the autonomous navigation of a vehicle in a wind farm. In this environment, the dynamic shadows cast by the wind turbines' blades make it necessary to include a shadows removal stage in the preprocessing of the visible spectrum images in order to avoid the shadows being misclassified as obstacles.
View Article and Find Full Text PDF