Acute lymphoblastic leukemia (ALL) is the most prevalent cancer in children, and despite considerable progress in treatment outcomes, relapses still pose significant risks of mortality and long-term complications. To address this challenge, we employed a supervised machine learning technique, specifically random survival forests, to predict the risk of relapse and mortality using array-based DNA methylation data from a cohort of 763 pediatric ALL patients treated in Nordic countries. The relapse risk predictor (RRP) was constructed based on 16 CpG sites, demonstrating c-indexes of 0.
View Article and Find Full Text PDFDiffuse Large B-cell Lymphoma (DLBCL) is the most common type of aggressive lymphoma. Approximately 60% of fit patients achieve curation with immunochemotherapy, but the remaining patients relapse or have refractory disease, which predicts a short survival. Traditionally, risk stratification in DLBCL has been based on scores that combine clinical variables.
View Article and Find Full Text PDFRisk stratification in acute myeloid leukemia (AML) has been extensively improved thanks to the incorporation of recurrent cytogenomic alterations into risk stratification guidelines. However, mortality rates among fit patients assigned to low or intermediate risk groups are still high. Therefore, significant room exists for the improvement of AML prognostication.
View Article and Find Full Text PDFA growing need to evaluate risk-adapted treatments in multiple myeloma (MM) exists. Several clinical and molecular scores have been developed in the last decades, which individually explain some of the variability in the heterogeneous clinical behavior of this neoplasm. Recently, we presented Iacobus-50 (IAC-50), which is a machine learning-based survival model based on clinical, biochemical, and genomic data capable of risk-stratifying newly diagnosed MM patients and predicting the optimal upfront treatment scheme.
View Article and Find Full Text PDFThe International Staging System (ISS) and the Revised International Staging System (R-ISS) are commonly used prognostic scores in multiple myeloma (MM). These methods have significant gaps, particularly among intermediate-risk groups. The aim of this study was to improve risk stratification in newly diagnosed MM patients using data from three different trials developed by the Spanish Myeloma Group.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Despite notable therapeutic advances in the last decades, 30%-40% of affected patients develop relapsed or refractory disease that frequently precludes an infamous outcome. With the advent of new therapeutic options, it becomes necessary to predict responses to the standard treatment based on rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP).
View Article and Find Full Text PDFFollicular Lymphoma (FL) has a 10-year mortality rate of 20%, and this is mostly related to lymphoma progression and transformation to higher grades. In the era of personalized medicine it has become increasingly important to provide patients with an optimal prediction about their expected outcomes. The objective of this work was to apply machine learning (ML) tools on gene expression data in order to create individualized predictions about survival in patients with FL.
View Article and Find Full Text PDFMultiple myeloma (MM) remains mostly an incurable disease with a heterogeneous clinical evolution. Despite the availability of several prognostic scores, substantial room for improvement still exists. Promising results have been obtained by integrating clinical and biochemical data with gene expression profiling (GEP).
View Article and Find Full Text PDFB-cell lymphoproliferative disorders exhibit a diverse spectrum of diagnostic entities with heterogeneous behaviour. Multiple efforts have focused on the determination of the genomic drivers of B-cell lymphoma subtypes. In the meantime, the aggregation of diverse tumors in pan-cancer genomic studies has become a useful tool to detect new driver genes, while enabling the comparison of mutational patterns across tumors.
View Article and Find Full Text PDFAcute Myeloid Leukemia (AML) is a heterogeneous neoplasm characterized by cytogenetic and molecular alterations that drive patient prognosis. Currently established risk stratification guidelines show a moderate predictive accuracy, and newer tools that integrate multiple molecular variables have proven to provide better results. In this report, we aimed to create a new machine learning model of AML survival using gene expression data.
View Article and Find Full Text PDFThere is growing evidence indicating the implication of germline variation in cancer predisposition and prognostication. Here, we describe an analysis of likely disruptive rare variants across the genomes of 726 patients with B-cell lymphoid neoplasms. We discovered a significant enrichment for two genes in rare dysfunctional variants, both of which participate in the regulation of oxidative stress pathways ( and ).
View Article and Find Full Text PDFBackground: FLT3 mutation is present in 25-30% of all acute myeloid leukemias (AML), and it is associated with adverse outcome. FLT3 inhibitors have shown improved survival results in AML both as upfront treatment and in relapsed/refractory disease. Curiously, a variable proportion of wild-type FLT3 patients also responded to these drugs.
View Article and Find Full Text PDFBackground: Thirty to forty percent of patients with Diffuse Large B-cell Lymphoma (DLBCL) have an adverse clinical evolution. The increased understanding of DLBCL biology has shed light on the clinical evolution of this pathology, leading to the discovery of prognostic factors based on gene expression data, genomic rearrangements and mutational subgroups. Nevertheless, additional efforts are needed in order to enable survival predictions at the patient level.
View Article and Find Full Text PDFMutations in the FMS-like tyrosine kinase 3 (FLT3) gene arise in 25-30% of all acute myeloid leukemia (AML) patients. These mutations lead to constitutive activation of the protein product and are divided in two broad types: internal tandem duplication (ITD) of the juxtamembrane domain (25% of cases) and point mutations in the tyrosine kinase domain (TKD). Patients with FLT3 ITD mutations have a high relapse risk and inferior cure rates, whereas the role of FLT3 TKD mutations still remains to be clarified.
View Article and Find Full Text PDFManagement of patients with relapsed or refractory (R/R) AL amyloidosis is complex. Some initial reports have shown positive results with daratumumab in heavily pre-treated AL amyloidosis patients. In this retrospective multicentric study, 38 patients (mean age 64 ± 9 years) with R/R AL amyloidosis treated with daratumumab were included.
View Article and Find Full Text PDFMutations in non-coding DNA regions are increasingly recognized as cancer drivers. These mutations can modify gene expression in cis or by inducing high-order chormatin structure modifications with long-range effects. Previous analysis reported the detection of recurrent and functional non-coding DNA mutations in the chronic lymphocytic leukemia (CLL) genome, such as those in the 3' untranslated region of NOTCH1 and in the PAX5 super-enhancer.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is the most frequent lymphoproliferative syndrome in Western countries, and it is characterized by recurrent large genomic rearrangements. During the last decades, array techniques have expanded our knowledge about CLL's karyotypic aberrations. The advent of large sequencing databases expanded our knowledge cancer genomics to an unprecedented resolution and enabled the detection of small-scale structural aberrations in the cancer genome.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is the most frequent lymphoproliferative syndrome in western countries. CLL evolution is frequently indolent, and treatment is mostly reserved for those patients with signs or symptoms of disease progression. In this work, we used RNA sequencing data from the International Cancer Genome Consortium CLL cohort to determine new gene expression patterns that correlate with clinical evolution.
View Article and Find Full Text PDF