Publications by authors named "Marta Pradas-Juni"

Adipose tissue regulates whole-body energy balance and is crucial for metabolic health. With energy surplus, adipose tissue expands, which may lead to local areas of hypoxia and inflammation, and consequently impair whole-body insulin sensitivity. We report that DICER, a key enzyme for miRNA maturation, is significantly lower in abdominal subcutaneous white adipose tissue of men with obesity compared with men with a lean phenotype.

View Article and Find Full Text PDF

Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function.

View Article and Find Full Text PDF

Objective: Early postnatal life is a critical period for the establishment of the functional β-cell mass that will sustain whole-body glucose homeostasis during the lifetime. β cells are formed from progenitors during embryonic development but undergo significant expansion in quantity and attain functional maturity after birth. The signals and pathways involved in these processes are not fully elucidated.

View Article and Find Full Text PDF

Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans.

View Article and Find Full Text PDF

Increasing brown adipose tissue (BAT) thermogenesis in mice and humans improves metabolic health and understanding BAT function is of interest for novel approaches to counteract obesity. The role of long noncoding RNAs (lncRNAs) in these processes remains elusive. We observed maternally expressed, imprinted lncRNA H19 increased upon cold-activation and decreased in obesity in BAT.

View Article and Find Full Text PDF

Cross-sex hormone therapy (CHT) is critical for phenotypical and physiological transition in adults with gender dysphoria (GD). However, the impact of the CHT onto the molecular level/epigenetic regulation has not been comprehensively addressed. We postulate that CHT in GD could drive changes at the androgen receptor (AR), estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2), affecting their DNA methylation pattern and mRNA expression that may influence in the phenotypical changes associated to CHT.

View Article and Find Full Text PDF

Activation of brown adipose tissue (BAT) controls energy homeostasis in rodents and humans and has emerged as an innovative strategy for the treatment of obesity and type 2 diabetes mellitus. Here we show that ageing- and obesity-associated dysfunction of brown fat coincides with global microRNA downregulation due to reduced expression of the microRNA-processing node Dicer1. Consequently, heterozygosity of Dicer1 in BAT aggravated diet-induced-obesity (DIO)-evoked deterioration of glucose metabolism.

View Article and Find Full Text PDF

Autoimmune polyglandular syndrome type 1 (APS-1, OMIM 240300) is a rare autosomal recessive disorder, characterized by the presence of at least two of three major diseases: hypoparathyroidism, Addison's disease, and chronic mucocutaneous candidiasis. We aim to identify the molecular defects and investigate the clinical and mutational characteristics in an index case and other members of a consanguineous family. We identified a novel homozygous mutation in the splice site acceptor (SSA) of intron 5 (c.

View Article and Find Full Text PDF

Background: The single nucleotide polymorphism (SNP) rs7903146 (C/T), located in intron 4 of the transcription factor 7-like 2 gene (TCF7L2), has been associated with an increased risk of developing Type 2 Diabetes, although the molecular mechanism remain elusive. The TCF7L2 gene is alternatively spliced but an association between genotype and splice variants has not been shown convincingly. We hypothesized that a yet unknown extra exon, containing either the C or T genotype of the SNP rs7903146, could introduce a premature stop codon and consequently result in nonsense-mediated decay (NMD).

View Article and Find Full Text PDF