Hematopoiesis and lineage commitment are regulated by several conserved cell-intrinsic signaling pathways, including MAPKs and β-catenin/TCF/LEF. The Inhibitor of MyoD Family A (I-MFA), a transcriptional repressor and tumor suppressor gene, interacts with these pathways and is dysregulated in chronic and acute myeloid leukemias, suggesting it may play a role in development and differentiation during hematopoiesis. To study this, immune cell populations in the bone marrow (BM) and periphery were analyzed in mice lacking Mdfi, encoding I-MFA (I-MFA-/-), and wild type (WT) controls.
View Article and Find Full Text PDFFamilial hypocalciuric hypercalcemia (FHH) is a genetic condition associated with hypocalciuria, hypercalcemia, and, in some cases, inappropriately high levels of circulating parathyroid hormone (PTH). FHH is associated with inactivating mutations in the gene encoding the Ca2+-sensing receptor (CaSR), a GPCR, and GNA11 encoding G protein subunit α 11 (Gα11), implicating defective GPCR signaling as the root pathophysiology for FHH. However, the downstream mechanism by which CaSR activation inhibits PTH production/secretion is incompletely understood.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is caused by inactivating mutations in (85%) or (15%). The ADPKD proteins encoded by these genes, polycystin-1 (PC1) and polycystin-2 (PC2), form a plasma membrane receptor-ion channel complex. However, the mechanisms controlling the subcellular localization of PC1 and PC2 are poorly understood.
View Article and Find Full Text PDFSarcolemma damage and activation of various calcium channels are implicated in altered Ca(2+) homeostasis in muscle fibres of both Duchenne muscular dystrophy (DMD) sufferers and in the mdx mouse model of DMD. Previously we have demonstrated that also in mdx myoblasts extracellular nucleotides trigger elevated cytoplasmic Ca(2+) concentrations due to alterations of both ionotropic and metabotropic purinergic receptors. Here we extend these findings to show that the mdx mutation is associated with enhanced store-operated calcium entry (SOCE).
View Article and Find Full Text PDFIt has been reported that IL-6 knockout mice (IL-6⁻/⁻) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max)), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.
View Article and Find Full Text PDFActivation of T-cells triggers store-operated Ca(2+) entry, which begins a signaling cascade leading to induction of appropriate gene expression and eventually lymphocyte proliferation and differentiation. The simultaneous enhancement of Fas ligand gene expression in activated cells allows the immune response to be limited by committing the activated cells to apoptosis. In apoptotic cells the store-operated calcium entry is significantly inhibited.
View Article and Find Full Text PDFA proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes.
View Article and Find Full Text PDFDuchenne Muscular Dystrophy is characterized by severe defects in differentiated muscle fibers, including abnormal calcium homeostasis and impaired cellular energy metabolism. Here we demonstrate that myoblasts derived from dystrophic (mdx) mouse exhibit reduced oxygen consumption, increased mitochondrial membrane potential, enhanced reactive oxygen species formation, stimulated glycolysis but unaffected total cellular ATP content. Moreover, reduced amounts of specific subunits of the mitochondrial respiratory complexes and ATP-synthase as well as disorganized mitochondrial network were observed.
View Article and Find Full Text PDF