Publications by authors named "Marta Olejniczak"

Background: The expansion of CAG/CTG repeats in functionally unrelated genes is a causative factor in many inherited neurodegenerative disorders, including Huntington's disease (HD), spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1). Despite many years of research, the mechanism responsible for repeat instability is unknown, and recent findings indicate the key role of DNA repair in this process. The repair of DSBs induced by genome editing tools results in the shortening of long CAG/CTG repeats in yeast models.

View Article and Find Full Text PDF

Recent research integrates novel technologies and methods from the interface of RNA biology and neuroscience. This advancing integration of both fields creates new opportunities in neuroscience to deepen the understanding of gene expression programs and their regulation that underlies the cellular heterogeneity and physiology of the central nervous system. Currently, transcriptional heterogeneity can be studied in individual neural cell types in health and disease.

View Article and Find Full Text PDF

Among the many proposed therapeutic strategies for Huntington's disease (HD), allele-selective therapies are the most desirable but also the most challenging. RNA interference (RNAi) tools that target CAG repeats selectively reduce the mutant huntingtin level in cellular models of HD. The purpose of this study was to test the efficacy, selectivity, and safety of two vector-based RNAi triggers in an animal model of HD.

View Article and Find Full Text PDF

Polyglutamine (polyQ) diseases, including Huntington's disease, are a group of late-onset progressive neurological disorders caused by CAG repeat expansions. Although recently, many studies have investigated the pathological features and development of polyQ diseases, many questions remain unanswered. The advancement of new gene-editing technologies, especially the CRISPR-Cas9 technique, has undeniable value for the generation of relevant polyQ models, which substantially support the research process.

View Article and Find Full Text PDF

As the possibilities of CRISPR-Cas9 technology have been revealed, we have entered a new era of research aimed at increasing its specificity and safety. This stage of technology development is necessary not only for its wider application in the clinic but also in basic research to better control the process of genome editing. Research during the past eight years has identified some factors influencing editing outcomes and led to the development of highly specific endonucleases, modified guide RNAs and computational tools supporting experiments.

View Article and Find Full Text PDF

RNA interference (RNAi) technology has been used for almost two decades to study gene functions and in therapeutic approaches. It uses cellular machinery and small, designed RNAs in the form of synthetic small interfering RNAs (siRNAs) or vector-based short hairpin RNAs (shRNAs), and artificial miRNAs (amiRNAs) to inhibit a gene of interest. Artificial miRNAs, known also as miRNA mimics, shRNA-miRs, or pri-miRNA-like shRNAs have the most complex structures and undergo two-step processing in cells to form mature siRNAs, which are RNAi effectors.

View Article and Find Full Text PDF

Polyglutamine (polyQ) diseases are incurable neurological disorders caused by CAG repeat expansion in the open reading frames (ORFs) of specific genes. This type of mutation in the HTT gene is responsible for Huntington's disease (HD). CAG repeat-targeting artificial miRNAs (art-miRNAs) were shown as attractive therapeutic approach for polyQ disorders as they caused allele-selective decrease in the level of mutant proteins.

View Article and Find Full Text PDF

The CRISPR-Cas system has become a cutting-edge technology that revolutionized genome engineering. The use of Cas9 nuclease is currently the method of choice in most tasks requiring a specific DNA modification. The rapid development in the field of CRISPR-Cas is reflected by the constantly expanding ecosystem of computational tools aimed at facilitating experimental design and result analysis.

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by the expansion of CAG repeats in exon 1 of the huntingtin gene (). Despite its monogenic nature, HD pathogenesis is still not fully understood, and no effective therapy is available to patients. The development of new techniques such as genome engineering has generated new opportunities in the field of disease modeling and enabled the generation of isogenic models with the same genetic background.

View Article and Find Full Text PDF

The expansion of CAG repeats within the coding region of associated genes is responsible for nine inherited neurodegenerative disorders including Huntington's disease (HD), spinocerebellar ataxias (SCAs), and dentatorubral-pallidoluysian atrophy (DRPLA). Despite years of research aimed at developing an effective method of treatment, these diseases remain incurable and only their symptoms are controlled. The purpose of this study was to develop effective and allele-selective genetic tools for silencing the expression of mutated genes containing expanded CAG repeats.

View Article and Find Full Text PDF

Huntington's disease (HD) is a hereditary neurological disorder caused by expansion of the CAG repeat tract in the huntingtin gene (HTT). The mutant protein with a long polyglutamine tract is toxic to cells, especially neurons, leading to their progressive degeneration. Similar to many other monogenic diseases, HD is a good target for gene therapy approaches, including the use of programmable endonucleases.

View Article and Find Full Text PDF

Dentatorubral-pallidoluysian atrophy (DRPLA) is an incurable autosomal dominant disease caused by an expansion of a CAG repeats in ATN1 gene encoding atrophin 1 protein. Here we report the generation of IBCHi001-A, an induced pluripotent stem cell (iPSC) line derived from DRPLA patient fibroblasts using non-integrative reprogramming technology with OCT4, SOX2, cMYC and KLF4 reprogramming factors. The pluripotency of iPSC was confirmed by immunocytochemistry and PCR for pluripotency markers and by the ability to form three germ layers in vitro.

View Article and Find Full Text PDF

Genome editing technology based on engineered nucleases has been increasingly applied for targeted modification of genes in a variety of cell types and organisms. However, the methods currently used for evaluating the editing efficiency still suffer from many limitations, including preferential detection of some mutation types, sensitivity to polymorphisms that hamper mismatch detection, lack of multiplex capability, or sensitivity to assay conditions. Here, we describe qEva-CRISPR, a new quantitative method that overcomes these limitations and allows simultaneous (multiplex) analysis of CRISPR/Cas9-induced modifications in a target and the corresponding off-targets or in several different targets.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in the first exon of the huntingtin gene (). The accumulation of polyglutamine-rich huntingtin proteins affects various cellular functions and causes selective degeneration of neurons in the striatum. Therapeutic strategies used to date to silence the expression of mutant include antisense oligonucleotides, RNA interference-based approaches and, recently, genome editing with the CRISPR/Cas9 system.

View Article and Find Full Text PDF

Hypothesis: Microemulsion-based semisolid systems may be considered as an interesting alternative to the traditional dosage forms applied in topical drug delivery. Mechanical properties of topical products are important both in terms of application and dosage form effectiveness. In this study we designed and evaluated novel microemulsion-based gels with indomethacin and analyzed the factors affecting their mechanical characteristics and drug release.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in the regulation of cellular homeostasis in eukaryotic organisms. There is emerging evidence that some of these processes are influenced by various forms of cellular stresses, including DNA damage, pathogen invasion or chronic stress associated with diseases. Many reports over the last decade demonstrate examples of stress-induced miRNA deregulation at the level of transcription, processing, subcellular localization and functioning.

View Article and Find Full Text PDF

shmiRs are pri-miRNA-based RNA interference triggers from which exogenous siRNAs are expressed in cells to silence target genes. These reagents are very promising tools in RNAi in vivo applications due to their good activity profile and lower toxicity than observed for other vector-based reagents such as shRNAs. In this study, using high-resolution northern blotting and small RNA sequencing, we investigated the precision with which RNases Drosha and Dicer process shmiRs.

View Article and Find Full Text PDF

RNA interference triggers such as short interfering RNA (siRNA) or genetically encoded short hairpin RNA (shRNA) and artificial miRNA (sh-miR) are widely used to silence the expression of specific genes. In addition to silencing selected targets, RNAi reagents may induce various side effects, including immune responses. To determine the molecular markers of immune response activation when using RNAi reagents, we analyzed the results of experiments gathered in the RNAimmuno (v 2.

View Article and Find Full Text PDF

Trinucleotide repeat expansion disorders (TREDs) are a group of dominantly inherited neurological diseases caused by the expansion of unstable repeats in specific regions of the associated genes. Expansion of CAG repeat tracts in translated regions of the respective genes results in polyglutamine- (polyQ-) rich proteins that form intracellular aggregates that affect numerous cellular activities. Recent evidence suggests the involvement of an RNA toxicity component in polyQ expansion disorders, thus increasing the complexity of the pathogenic processes.

View Article and Find Full Text PDF

Numerous types of transcripts perform multiple functions in cells, and these functions are mainly facilitated by the interactions of the RNA with various proteins and other RNAs. Insight into the dynamics of RNA biosynthesis, processing and cellular activities is highly desirable because this knowledge will deepen our understanding of cell physiology and help explain the mechanisms of RNA-mediated pathologies. In this review, we discuss the live RNA imaging systems that have been developed to date.

View Article and Find Full Text PDF

Repeat-associated disorders caused by expansions of short sequences have been classified as coding and noncoding and are thought to be caused by protein gain-of-function and RNA gain-of-function mechanisms, respectively. The boundary between such classifications has recently been blurred by the discovery of repeat-associated non-AUG (RAN) translation reported in spinocerebellar ataxia type 8, myotonic dystrophy type 1, fragile X tremor/ataxia syndrome and C9ORF72 amyotrophic lateral sclerosis and frontotemporal dementia. This noncanonical translation requires no AUG start codon and can initiate in multiple frames of CAG, CGG and GGGGCC repeats of the sense and antisense strands of disease-relevant transcripts.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative genetic disorder caused by the expansion of the CAG repeat in the translated sequence of the HTT gene. This expansion generates a mutant huntingtin protein that contains an abnormally elongated polyglutamine tract, which, together with mutant transcript, causes cellular dysfunction. Currently, there is no curative treatment available to patients suffering from HD; however, the selective inhibition of the mutant allele expression is a promising therapeutic option.

View Article and Find Full Text PDF

The RNAimmuno database was created to provide easy access to information regarding the nonspecific effects generated in cells by RNA interference triggers and microRNA regulators. Various RNAi and microRNA reagents, which differ in length and structure, often cause non-sequence-specific immune responses, in addition to triggering the intended sequence-specific effects. The activation of the cellular sensors of foreign RNA or DNA may lead to the induction of type I interferon and proinflammatory cytokine release.

View Article and Find Full Text PDF

Background: RNA interference (RNAi) and antisense strategies provide experimental therapeutic agents for numerous diseases, including polyglutamine (polyQ) disorders caused by CAG repeat expansion. We compared the potential of different oligonucleotide-based strategies for silencing the genes responsible for several polyQ diseases, including Huntington's disease and two spinocerebellar ataxias, type 1 and type 3. The strategies included nonallele-selective gene silencing, gene replacement, allele-selective SNP targeting and CAG repeat targeting.

View Article and Find Full Text PDF

Short interfering RNAs (siRNAs) are the most commonly used RNA interference (RNAi) triggers. They hold promise as potent therapeutic tools, as demonstrated by recent successful in vivo experiments. However, in addition to triggering intended sequence-specific silencing effects, the reagents of RNAi technology can often cause side effects, including immunological off-target effects.

View Article and Find Full Text PDF