Publications by authors named "Marta Nocella"

The goal of this study was to investigate the effects of repetitive stimulation and the oxidant HO on fatigue of diaphragm intact fibers and in myofibrils measured with different Ca concentrations. Intact fibers were isolated from mice diaphragm, and twitch and tetanic contractions (500 ms duration) were performed at different frequencies of stimulation ranging from 15 Hz to 150 Hz to establish a force-frequency relation before and after a fatigue and recovery protocol, without or after a treatment with HO. Fatigue was induced with isometric contractions (500 ms, 40 Hz) evoked every 0.

View Article and Find Full Text PDF

Understanding the relationship between physical exercise, reactive oxygen species, and skeletal muscle modification is important in order to better identify the benefits or the damages that appropriate or inappropriate exercise can induce. Heart and skeletal muscles have a high density of mitochondria with robust energetic demands, and mitochondria plasticity has an important role in both the cardiovascular system and skeletal muscle responses. The aim of this study was to investigate the influence of regular physical activity on the oxidation profiles of mitochondrial proteins from heart and tibialis anterior muscles.

View Article and Find Full Text PDF

Stretching of an activated skeletal muscle induces a transient tension increase followed by a period during which the tension remains elevated well above the isometric level at an almost constant value. This excess of tension in response to stretching has been called 'static tension' and attributed to an increase in fibre stiffness above the resting value, named 'static stiffness'. This observation was originally made, by our group, in frog intact muscle fibres and has been confirmed more recently, by us, in mammalian intact fibres.

View Article and Find Full Text PDF

To examine the role of sphingosine 1-phosphate (S1P) receptor 3 (S1P3) in modulating muscle properties, we utilized transgenic mice depleted of the receptor. Morphological analyses of extensor digitorum longus (EDL) muscle did not show evident differences between wild-type and S1P3-null mice. The body weight of 3-mo-old S1P3-null mice and the mean cross-sectional area of transgenic EDL muscle fibers were similar to those of wild-type.

View Article and Find Full Text PDF

When skeletal muscles are stretched during activation in the absence of myosin-actin interactions, the force increases significantly. The force remains elevated throughout the activation period. The mechanism behind this non-crossbridge force, referred to as static tension, is unknown and generates debate in the literature.

View Article and Find Full Text PDF

Stretching of activated skeletal muscles induces a force increase above the isometric level persisting after stretch, known as residual force enhancement (RFE). RFE has been extensively studied; nevertheless, its mechanism remains debated. Unlike previous RFE studies, here the excess of force after stretch, termed static tension (ST), was investigated with fast stretches (amplitude: 3-4% sarcomere length; duration: 0.

View Article and Find Full Text PDF

Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.

View Article and Find Full Text PDF

Stretching of active muscles leads to a great enhancement of the force developed without increased ATP consumption. The mechanism of force enhancement is still debated and it is not clear if it is due to increased crossbridge strain or to a stretch-induced increase in crossbridge number. The present study, performed on single fibres from tibialis anterior or interosseus muscles of the frog at 5 °C, was aimed at clarifying this point.

View Article and Find Full Text PDF

We showed previously that force development in frog and FDB mouse skeletal muscle fibres is preceded by an increase of fibre stiffness occurring well before crossbridge attachment and force generation. This stiffness increase, referred to as static stiffness, is due to a Ca(2+)-dependent stiffening of a non-crossbridge sarcomere structure which we suggested could be attributed to the titin filaments. To investigate further the role of titin in static stiffness, we measured static stiffness properties at 24 and 35°C in soleus and EDL mouse muscle fibres which are known to express different titin isoforms.

View Article and Find Full Text PDF

Fatigue occurring during exercise can be defined as the inability to maintain the initial force or power output. As fatigue becomes pronounced, force and maximum velocity of shortening are greatly reduced and force relaxation is prolonged. In principle, force loss during fatigue can result from a decrease in the number of cross-bridges generating force or a decrease of the individual cross-bridge force or to both mechanisms.

View Article and Find Full Text PDF

Cross-bridges properties were measured under different experimental conditions by applying fast stretches to activated skeletal frog muscle fiber to -forcibly detach the cross-bridge ensemble. This allowed to measure the tension needed to detach the cross-bridges, P(c), and the sarcomere elongation at the rupture force, L(c). These two parameters are expected to be correlated with cross-bridges number (P(c)) and their mean extension (L(c)).

View Article and Find Full Text PDF

The cross-bridge stiffness can be used to estimate the number of S1 that are bound to actin during contraction, which is a critical parameter for elucidating the fundamental mechanism of the myosin motor. At present, the development of active tension and the increase in muscle stiffness due to S1 binding to actin are thought to be linearly related to the number of cross-bridges formed upon activation. The nonlinearity of total stiffness with respect to active force is thought to arise from the contribution of actin and myosin filament stiffness to total sarcomere elasticity.

View Article and Find Full Text PDF

Force generation and movement in skeletal muscle result from a cyclical interaction of overlapping myosin and actin filaments that permits the free energy of ATP hydrolysis to be converted into mechanical work. The rapid force recovery that occurs after a step release imposed on a muscle is thought to result from a synchronized tilting of myosin lever arms toward a position of lower free energy (the power stroke). We investigated the power stroke mechanism in intact muscle fibers of Rana esculenta using a fast stretch to detach forcibly cross-bridges.

View Article and Find Full Text PDF

The effects of overexpression of the local form of insulin like growth factor-1 (mIgf-1) on skeletal muscle were investigated by comparing the mechanical properties of single intact fibres from the flexor digitorum brevis of wild-type (WT) and (MLC/mIgf-1) transgenic mice (TG)at 21-24 degrees C. Isolated single fibres were clean enough to measure accurately the sarcomere length. The parameters investigated were: tetanic absolute and specific force, the force-velocity relationship, and the sarcomere length-tension relationship.

View Article and Find Full Text PDF

It is well known that the force developed by skeletal muscles increases with temperature. Despite the work done on this subject, the mechanism of force potentiation is still debated. Most of the published papers suggest that force enhancement is due to the increase of the individual cross-bridge force.

View Article and Find Full Text PDF

The mechanism of force enhancement during lengthening was investigated on single frog muscle fibres by using fast stretches to measure the rupture tension of the crossbridge ensemble. Fast stretches were applied to one end of the activated fibre and force responses were measured at the other. Sarcomere length was measured by a striation follower device.

View Article and Find Full Text PDF