Fluorescence lifetime measurements of blood or plasma offer valuable insights into the microenvironment and molecular interactions of fluorophores, particularly concerning albumin. Neutrophil- and hypoxia-induced oxidative stress in COVID-19 pneumonia patients leads to hyperinflammation, various oxidative modifications of blood proteins, and potential alterations in the fluorescence lifetime of tryptophan-containing proteins, especially albumin. The objective of this study was to investigate the efficacy of time-resolved fluorescence spectroscopy of blood and plasma as a prompt diagnostic tool for the early diagnosis and severity assessment of COVID-19-associated pneumonia.
View Article and Find Full Text PDFThe aim of this study was to investigate the aggregation of red blood cells (RBCs) suspended in dextran solution at various levels of molecular mass. Dextran solutions at molecular mass 40, 70, 100 and 500 kDa at concentration from 2 to 5 g/dL were used to suspend the RBCs. The radius and velocity of sedimenting RBC aggregates were investigated using image analysis.
View Article and Find Full Text PDFA method of rapidly pointing out the risk of developing persistent pulmonary fibrosis from a sample of blood is extraordinarily needed for diagnosis, prediction of death, and post-infection prognosis assessment. Collagen scar formation has been found to play an important role in the lung remodeling following SARS-CoV-2 infection. For this reason, the concentration of collagen degradation products in plasma may reflect the process of lung remodeling and determine the extent of fibrosis.
View Article and Find Full Text PDFThe aim of this study was to examine the usefulness of time-resolved fluorescence spectroscopy in the evaluation of the oxidative processes in human plasma. To investigate the impact of oxidative stress on the fluorescence of plasma, five studied markers (thiobarbituric acid-reactive substances, ischemia modified albumin, carbonyl groups, hydrogen peroxide, advanced oxidation protein products) were chosen as oxidative damage approved markers. Our method presents several advantages over traditional methods as it is a direct, non-time-consuming, repeatable, and non-invasive technique that requires only simple pre-treatment of samples without additional reagents and the sample size needed for analysis is small.
View Article and Find Full Text PDFEfficient production hosts are a key requirement for bringing biopharmaceutical and biotechnological innovations to the market. In this work, a truly universal high-throughput platform for optimization of microbial protein production is described. Using droplet microfluidics, large genetic libraries of strains are encapsulated into biocompatible gel beads that are engineered to selectively retain any protein of interest.
View Article and Find Full Text PDFMiniaturization of cell-based assays enables the analysis of secreted compounds from low cell numbers down to a single cell. Droplet microfluidics is a well-established tool for high-throughput single-cell analysis. Nevertheless, the integration of label-free bioanalytical techniques like mass spectrometry is still ongoing.
View Article and Find Full Text PDFSuccessful establishment of CRISPR/Cas9 genome editing technology in Plasmodium spp. has provided a powerful tool to transform Plasmodium falciparum into a genetically more tractable organism. Conditional gene regulation approaches are required to study the function of gene products critical for growth and erythrocyte invasion of blood stage parasites.
View Article and Find Full Text PDF