Peroxisomes are organelles involved in many cellular metabolic functions, including the degradation of very-long-chain fatty acids (VLCFAs; C ≥ 22), the initiation of ether-phospholipid synthesis, and the metabolism of reactive oxygen species. All of these processes are essential for the maintenance of cellular lipid and redox homeostasis, and their perturbation can trigger inflammatory response in immune cells, including in the central nervous system (CNS) resident microglia and astrocytes. Consistently, peroxisomal disorders, a group of congenital diseases caused by a block in peroxisomal biogenesis or the impairment of one of the peroxisomal enzymes, are associated with neuroinflammation.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
July 2024
Reactive aldehydes are a class of electrophilic low molecular weight compounds that play an essential role in physiological function and lipid peroxidation. These molecules are implicated in many diseases, especially cardiovascular and neurodegenerative diseases, and are potential endogenous markers of lipid peroxidation. However, there are limited options to accurately quantify multiple reactive aldehydes in brain tissue.
View Article and Find Full Text PDFBrain tissue is highly enriched in lipids, the majority of which are glycerophospholipids. Glycerophospholipids are the major constituents of cellular membranes and play an important role in maintaining integrity and function of cellular and subcellular structures. Any changes in glycerophospholipid homeostasis can adversely affect brain functions.
View Article and Find Full Text PDFMutations in the gene are the single most frequent genetic risk factor for Parkinson's disease (PD). Neurodegenerative changes in -associated PD have been linked to the defective lysosomal clearance of autophagic substrates and aggregate-prone proteins. To elucidate novel mechanisms contributing to proteinopathy in PD, we investigated the effect of mutations on the transcription factor EB (TFEB), the master regulator of the autophagy-lysosomal pathway (ALP).
View Article and Find Full Text PDFExcessive and prolonged neuroinflammation following traumatic brain injury (TBI) contributes to long-term tissue damage and poor functional outcomes. However, the mechanisms contributing to exacerbated inflammatory responses after brain injury remain poorly understood. Our previous work showed that macroautophagy/autophagy flux is inhibited in neurons following TBI in mice and contributes to neuronal cell death.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
Autophagy is a cellular catabolic pathway generally thought to be neuroprotective. However, autophagy and in particular its upstream regulator, the ULK1 kinase, can also promote axonal degeneration. We examined the role and the mechanisms of autophagy in axonal degeneration using a mouse model of contusive spinal cord injury (SCI).
View Article and Find Full Text PDFAutophagy is a catabolic process that degrades cytoplasmic constituents and organelles in the lysosome, thus serving an important role in cellular homeostasis and protection against insults. We previously reported that defects in autophagy contribute to neuronal cell damage in traumatic spinal cord injury (SCI). Recent data from other inflammatory models implicate autophagy in regulation of immune and inflammatory responses, with low levels of autophagic flux associated with pro-inflammatory phenotypes.
View Article and Find Full Text PDFElderly patients with traumatic brain injury (TBI) have greater mortality and poorer outcomes than younger individuals. The extent to which old age alters long-term recovery and chronic microglial activation after TBI is unknown, and evidence for therapeutic efficacy in aged mice is sorely lacking. The present study sought to identify potential inflammatory mechanisms underlying age-related outcomes late after TBI.
View Article and Find Full Text PDFChanges in plasmalogen glycerophosphoethanolamine (PE-P) composition (structure and abundance) are a key indicator of altered lipid metabolism. Differential changes in the levels of PE-P have been reported in different disease states, including neurodegenerative diseases. Of particular interest, traumatic brain injury (TBI) has resulted in altered expression of glycerophospholipid profiles, including PE-P.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major cause of mortality and long-term disability around the world. Even mild to moderate TBI can lead to lifelong neurological impairment due to acute and progressive neurodegeneration and neuroinflammation induced by the injury. Thus, the discovery of novel treatments which can be used as early therapeutic interventions following TBI is essential to restrict neuronal cell death and neuroinflammation.
View Article and Find Full Text PDFBi-allelic mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive. mutations are also the most frequent genetic risk factors for Parkinson's disease.
View Article and Find Full Text PDFThe autophagy-lysosomal pathway plays an essential role in cellular homeostasis as well as a protective function against a variety of diseases including neurodegeneration. Conversely, inhibition of autophagy, for example due to lysosomal dysfunction, can lead to pathological accumulation of dysfunctional autophagosomes and consequent neuronal cell death. We previously reported that autophagy is inhibited and contributes to neuronal cell death following spinal cord injury (SCI).
View Article and Find Full Text PDFAutophagy is a physiological process that helps maintain a balance between the manufacture of cellular components and breakdown of damaged organelles and other toxic cellular constituents. Changes in autophagic markers are readily detectable in the spinal cord and brain following neurotrauma, including traumatic spinal cord and brain injury (SCI/TBI). However, the role of autophagy in neurotrauma remains less clear.
View Article and Find Full Text PDFLysosomal membrane permeabilization (LMP) is observed under many pathological conditions, leading to cellular dysfunction and death. However, the mechanisms by which lysosomal membranes become leaky are not clear. Our data demonstrate that LMP occurs in neurons following controlled cortical impact induced (CCI) traumatic brain injury (TBI) in mice, leading to impaired macroautophagy (autophagy) and neuronal cell death.
View Article and Find Full Text PDFRecent studies indicate a causative relationship between defects in autophagy and dopaminergic neuron degeneration in Parkinson disease (PD). However, it is not fully understood how autophagy is regulated in the context of PD. Here we identify (ubiquitin specific peptidase 24), a gene located in the (Parkinson disease 10 [susceptibility]) locus associated with late onset PD, as a novel negative regulator of autophagy.
View Article and Find Full Text PDFThe use of ultra performance liquid chromatography coupled to data independent tandem mass spectrometry with traveling wave ion mobility for detection and structural identification of ether-linked glycerophosphoethanolamine is described. The experimental design generates 4D data (chromatographic retention time, precursor accurate mass, drift time with associated calculated collisional cross-section, and time-aligned accurate mass diagnostic product ions) for each ionization mode. Confident structure identification depends on satisfying 4D data confirmation in both positive and negative ion mode.
View Article and Find Full Text PDFNecroptosis, a regulated necrosis pathway mediated by the receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3), is induced following spinal cord injury (SCI) and thought to contribute to neuronal and glial cell death. However, mechanisms leading to activation of necroptosis after SCI remain unclear. We have previously shown that autophagy, a catabolic pathway facilitating degradation of cytoplasmic proteins and organelles in a lysosome-dependent manner, is inhibited following SCI in rats.
View Article and Find Full Text PDFDrosophila models have been successfully used to identify many genetic components that affect neurodegenerative disorders. Recently, there has been a growing interest in identifying innate and environmental factors that influence the individual outcomes following traumatic brain injury (TBI). This includes both severe TBI and more subtle, mild TBI (mTBI), which is common in people playing contact sports.
View Article and Find Full Text PDFClinical and experimental studies show that spinal cord injury (SCI) can cause cognitive impairment and depression that can significantly impact outcomes. Thus, identifying mechanisms responsible for these less well-examined, important SCI consequences may provide targets for more effective therapeutic intervention. To determine whether cognitive and depressive-like changes correlate with injury severity, we exposed mice to sham, mild, moderate, or severe SCI using the Infinite Horizon Spinal Cord Impactor and evaluated performance on a variety of neurobehavioral tests that are less dependent on locomotion.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. In addition, there has been a growing appreciation that even repetitive, milder forms of TBI (mTBI) can have long-term deleterious consequences to neural tissues. Hampering our understanding of genetic and environmental factors that influence the cellular and molecular responses to injury has been the limited availability of effective genetic model systems that could be used to identify the key genes and pathways that modulate both the acute and long-term responses to TBI.
View Article and Find Full Text PDF