Publications by authors named "Marta Lorenzini"

Article Synopsis
  • Gait analysis studies in patients with primary hereditary cerebellar ataxia (pwCA) face challenges due to small sample sizes and unbalanced datasets.
  • The study aimed to evaluate how data balancing techniques and generative AI can create synthetic datasets that accurately reflect gait abnormalities in pwCA.
  • Using methods like conditional tabular generative adversarial networks (ctGAN), researchers found that ctGAN improved classification performance and provided better explainability for diagnostic models compared to traditional methods.
View Article and Find Full Text PDF

When performing lifting tasks at work, the Lifting Index () is widely used to prevent work-related low-back disorders, but it presents criticalities pertaining to measurement accuracy and precision. Wearable sensor networks, such as sensorized insoles and inertial measurement units, could improve biomechanical risk assessment by enabling the computation of an adaptive () that changes over time in relation to the actual method of carrying out lifting. This study aims to illustrate the concepts and mathematics underlying computation and compare calculations in real-time using wearable sensors and force platforms with the estimated with the standard method used by ergonomists and occupational health and safety technicians.

View Article and Find Full Text PDF

In the current industrial context, the importance of assessing and improving workers' health conditions is widely recognised. Both physical and psycho-social factors contribute to jeopardising the underlying comfort and well-being, boosting the occurrence of diseases and injuries, and affecting their quality of life. Human-robot interaction and collaboration frameworks stand out among the possible solutions to prevent and mitigate workplace risk factors.

View Article and Find Full Text PDF

The objective of this paper is to develop and evaluate a directional vibrotactile feedback interface as a guidance tool for postural adjustments during work. In contrast to the existing active and wearable systems such as exoskeletons, we aim to create a lightweight and intuitive interface, capable of guiding its wearers towards more ergonomic and healthy working conditions. To achieve this, a vibrotactile device called ErgoTac is employed to develop three different feedback modalities that are able to provide a directional guidance at the body segments towards a desired pose.

View Article and Find Full Text PDF

In this work, we propose an online method to detect and approximately locate an external load induced on the body of a person interacting with the environment. The method is based on a torque equilibrium condition on the human sagittal plane, which takes into account a reduced-complexity model of the whole-body centre of pressure (CoP) along with the measured one, and the vertical component of the ground reaction forces (vGRFs). The latter is combined with a statistical analysis approach to improve the localisation accuracy, (which is subject to uncertainties) to the extent of the industrial applications we target.

View Article and Find Full Text PDF