Publications by authors named "Marta Lafuente"

Surface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present SERS specimens based on periodic arrays of 3D-structures coated with silver, fabricated by silicon top-down micro and nanofabrication (10 mm × 10 mm footprint).

View Article and Find Full Text PDF

Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions.

View Article and Find Full Text PDF

Background: Cell-free DNA (cfDNA) analysis has become a promising tool for the diagnosis, prognosis, and monitoring of lymphoma cases. Until now, research in this area has mainly focused on aggressive lymphomas, with scanty information from other lymphoma subtypes.

Methods: We selected 256 patients diagnosed with lymphomas, including a large variety of B-cell and T-cell non-Hodgkin and Hodgkin lymphomas, and quantified cfDNA from plasma at the time of diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • * This study focuses on creating robust and reusable SERS microfluidic chips to help first responders identify neurotoxic gases accurately and quickly, emphasizing important features like detection limits, response time, and reusability.
  • * The research includes developing a special 3D structure using mesoporous silica and gold nanoparticles which enhances gas detection performance, specifically evaluating its effectiveness with DMMP, a neurotoxic simulant, under various conditions.
View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In this work, we present the formation of 67 ± 6 nm diameter gold nanoparticles supported by vertically aligned shell-insulated silicon nanocones for ultralow variance SERS.

View Article and Find Full Text PDF

Several clinical risk models have been proposed to predict the outcome of follicular lymphoma (FL). The development of next-generation sequencing technologies has allowed the integration of somatic gene mutations into clinical scores to build genotyped-based risk models, such as the m7-Follicular Lymphoma International Prognostic Index (FLIPI). We explored 4 clinical or clinicogenetic-risk models in patients with symptomatic FL who received frontline immunochemotherapy.

View Article and Find Full Text PDF

Molecular and cytogenetic studies are essential for diagnosis and prognosis in patients with myelodysplastic syndromes (MDSs). Cell-free DNA (cfDNA) analysis has been reported to be a reliable noninvasive approach for detecting molecular abnormalities in MDS; however, there is limited information about cytogenetic alterations and monitoring in cfDNA. We assessed the molecular and cytogenetic profile of a cohort of 70 patients with MDS by next-generation sequencing (NGS) of cfDNA and compared the results to sequencing of paired bone marrow (BM) DNA.

View Article and Find Full Text PDF

Imaging techniques based on mass spectrometry or spectroscopy methods inform about the chemical composition of biological tissues or organisms, but they are sometimes limited by their specificity, sensitivity, or spatial resolution. Multimodal imaging addresses these limitations by combining several imaging modalities; however, measuring the same sample with the same preparation using multiple imaging techniques is still uncommon due to the incompatibility between substrates, sample preparation protocols, and data formats. We present a multimodal imaging approach that employs a gold-coated nanostructured silicon substrate to couple surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and surface-enhanced Raman spectroscopy (SERS).

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique for selective detection and quantification of molecules at extremely low concentrations. However, practical SERS applications for gaseous chemicals with small cross section is still in its early stages. We herein report a plasmonic-sorbent thin-film platform with integrated Raman internal standard with outstanding SERS sensing capabilities for chemical warfare agents (CWA) simulants.

View Article and Find Full Text PDF

We present a simple, versatile, and low-cost approach for the preparation of surface-enhanced Raman spectroscopy (SERS)-active regions within a microfluidic channel 50 cm in length. The approach involves the UV-light-driven formation of polyoxometalate-decorated gold nanostructures, Au@POM (POM: HPWO (PW) and HPMoO (PMo)), that self-assemble in situ on the surface of the polydimethylsiloxane (PDMS) microchannels without any extra functionalization procedure. The fabricated LoCs were characterized by scanning electron microscopy (SEM), UV-vis, Raman, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques.

View Article and Find Full Text PDF

Lamellar nanoporous gold thin films, constituted of a stack of very thin layers of porous gold, are synthesized by chemical etching from a stack of successively deposited nanolayers of copper and gold. The gold ligament size, the pore size and the distance between lamellas are tunable in the few tens nanometer range by controlling the initial thickness of the layers and the etching time. The SERS activity of these lamellar porous gold films is characterized by their SERS responses after adsorption of probe bipyridine and naphtalenethiol molecules.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is gaining importance as an ultrasensitive analytical tool for routine high-throughput analysis of a variety of molecular compounds. One of the main challenges is the development of robust, reproducible and cost-effective SERS substrates. In this work, we study the SERS activity of 3D silver mirror-like micro-pyramid structures extended in the z-direction up to 3.

View Article and Find Full Text PDF

The development of SERS substrates for chemical detection of specific analytes requires appropriate selection of plasmonic metal and the surface where it is deposited. Here we deposited Ag nanoplates on three substrates: i) conventional SiO/Si wafer, ii) stainless steel mesh and iii) graphite foils. The SERS enhancement of the signal was studied for Rhodamine 6 G (R6 G) as common liquid phase probe molecule.

View Article and Find Full Text PDF

We report a robust and high-yield fabrication method for wafer-scale patterning of high-quality arrays of dense gold nanogaps, combining displacement Talbot lithography based shrink-etching with dry etching, wet etching, and thin film deposition techniques. By using the self-sharpening of <111>-oriented silicon crystal planes during the wet etching process, silicon structures with extremely smooth nanogaps are obtained. Subsequent conformal deposition of a silicon nitride layer and a gold layer results in dense arrays of narrow gold nanogaps.

View Article and Find Full Text PDF

One of the main limitations of the technique surface-enhanced Raman scattering (SERS) for chemical detection relies on the homogeneity, reproducibility and reusability of the substrates. In this work, SERS active platforms based on 3D-fractal microstructures is developed by combining corner lithography and anisotropic wet etching of silicon, to extend the SERS-active area into 3D, with electrostatically driven Au@citrate nanoparticles (NPs) assembly, to ensure homogeneous coating of SERS active NPs over the entire microstructured platforms. Strong SERS intensities are achieved using 3D-fractal structures compared to 2D-planar structures; leading to SERS enhancement factors for R6G superior than those merely predicted by the enlarged area effect.

View Article and Find Full Text PDF

Unlabelled: On May 20, 2016, a conditional marketing authorization valid through the European Union (EU) was issued for daratumumab as monotherapy for the treatment of adult patients with relapsed and refractory multiple myeloma, whose prior therapy included a proteasome inhibitor (PI) and an immunomodulatory drug (IMiD) and who had demonstrated disease progression on the last therapy. The review of daratumumab was conducted under the EMA's accelerated assessment program for drugs that are of major interest for public health, especially from the point of view of therapeutic innovation.Daratumumab monotherapy achieved an overall response rate of 29.

View Article and Find Full Text PDF