pH-responsive polymeric micelles have been extensively studied for nanomedicine and take advantage of pH differentials in tissues for the delivery of large doses of cytotoxic drugs at specific target sites. Despite significant advances in this area, there is a lack of versatile and adaptable strategies to render micelles pH-responsive that could be widely applied to different payloads and applications. To address this deficiency, we introduce the concept of oligoelectrolyte-mediated, pH-triggered release of hydrophobic drugs from non-responsive polymeric micelles as a highly effective approach with broad scope.
View Article and Find Full Text PDFHypothesis: Naturally extracted polysaccharides, such as guar gum, are promising candidates for environmentally friendly flotation reagents. It is hypothesized that the kinetics of collision of sub- to millimeter gas bubbles with a hydrophobic graphite surface, and the stability of thin liquid film formed between the bubble and surface is affected by an adsorbed layer of guar gum.
Experiments: A combination of gravimetric (quartz crystal microbalance with dissipation) and imaging (atomic force microscopy) techniques was used to investigate the adsorption of guar gum on graphite surface, while high-speed camera imaging allowed for direct observation of the bubble collision process with guar gum-modified graphite surfaces with millisecond resolution.
This review focuses on the current understanding regarding lipid crystallisation at oil-water interfaces. The main aspects of crystallisation in bulk lipids will be introduced, allowing for a more comprehensive overview of the crystallisation processes within emulsions. Additionally, the properties of an emulsion and the impact of lipid crystallisation on emulsion stability will be discussed.
View Article and Find Full Text PDFPolymeric micelles have been extensively studied as vectors for the delivery of hydrophobic drugs for the treatment of cancers and other diseases. Despite intensive research, few formulations provide significant benefits, and even fewer have been clinically approved. While many traditional non-responsive micelles have excellent safety profiles, they lack the ability to respond to the intracellular environment and release their cargo in a spatiotemporally defined manner to effectively deliver large doses of cytotoxic drugs into the cytosol of cells that overwhelm efflux pumps.
View Article and Find Full Text PDFPolymeric micelles are promising carriers for the delivery of poorly water-soluble drugs, providing enhanced drug solubility, blood circulation times, and bioavailability. Nevertheless, the storage and long-term stability of micelles in solution present challenges requiring the lyophilization and storage of formulations in the solid state, with reconstitution immediately prior to application. Therefore, it is important to understand the effects of lyophilization/reconstitution on micelles, particularly their drug-loaded counterparts.
View Article and Find Full Text PDFHypothesis: Dairy proteins and mono- and diglycerides (MDG) are often used in unison to tailor the properties of dairy-based emulsions. However, there are significant gaps in our understanding of how proteins affect lipid crystallisation at the oil-water interface. We have used a unique combination of interfacially-sensitive techniques to elucidate the impact of dairy proteins on interfacial MDG crystal formation.
View Article and Find Full Text PDFThe crystallinity of polymers strongly affects their properties. For block copolymers, whereby two crystallisable blocks are covalently tethered to one another, the molecular weight of the individual blocks and their relative weight fraction are important structural parameters that control their crystallisation. In the case of block copolymer micelles, these parameters can influence the crystallinity of the core, which has implications for drug encapsulation and release.
View Article and Find Full Text PDFEngineered T-cell therapies have proven highly efficacious for the treatment of haematological cancers, but translation of this success to solid tumours has been limited, in part, due to difficulties in maintaining high doses at specific target sites. Hydrogel delivery systems that provide a sustained release of T-cells at the target site are emerging as a promising strategy. Therefore, in this study we aimed to develop an injectable hydrogel that gels efficient Diels-Alder cycloaddition (DAC) chemistry and provides a sustained release of T-cells through gradual hydrolysis of the hydrogel matrix.
View Article and Find Full Text PDFAdvances in cellular reprogramming have radically increased the use of patient-derived cells for neurological research in vitro. However, adherence of human neurons on tissue cultureware is unreliable over the extended periods required for electrophysiological maturation. Adherence issues are particularly prominent for transferable glass coverslips, hindering imaging and electrophysiological assays.
View Article and Find Full Text PDFWater-in-oil-in-water (W/O/W) emulsions (double emulsions) have often been used for the encapsulation of bioactive compounds such as anthocyanins. Instability of both anthocyanins and double emulsions creates a need for a tailored composition of the aqueous phase. In this work, double emulsions with a gelled internal water phase were produced and monitored over a 20-day storage period.
View Article and Find Full Text PDFDairy emulsions contain an intrinsically heterogeneous lipid phase, whose components undergo crystallisation in a manner that is critical to dairy product formulation, storage, and sensory perception. Further complexity is engendered by the diverse array of interfacially-active molecules naturally present within the serum of dairy systems, and those that are added for specific formulation purposes, all of which interact at the lipid-serum interface and modify the impact of lipid crystals on dairy emulsion stability. The work described in this article addresses this complexity, with a specific focus on the impact of temperature cycling and the effect of emulsifier type on the formation and persistence of lipid crystals at lipid-solution interfaces.
View Article and Find Full Text PDFThe existing literature on the rise velocities of air bubbles in aqueous surfactant solutions adsorbing at the water-air interface focuses mainly on large bubbles ( > 1.2 mm). In addition, due to the way the bubbles in rising bubble experiments are formed, their size is dependent on interfacial tension (the lower the interfacial tension the smaller the bubble).
View Article and Find Full Text PDFUnderstanding the microstructural parameters of amphiphilic copolymers that control the formation and structure of aggregated colloids (e.g., micelles) is essential for the rational design of hierarchically structured systems for applications in nanomedicine, personal care and food formulations.
View Article and Find Full Text PDFAn antimicrobial peptide, nisin Z, was embedded within polyelectrolyte multilayers (PEMs) composed of natural polysaccharides in order to explore the potential of forming a multilayer with antimicrobial properties. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR), the formation of carrageenan/chitosan multilayers and the inclusion of nisin Z in two different configurations was investigated. Approximately 0.
View Article and Find Full Text PDFBiopolymer polyelectrolyte multilayers are a commonly studied soft matter system for wound healing applications due to the biocompatibility and beneficial properties of naturally occurring polyelectrolytes. In this work, a popular biopolymer, chitosan, was combined with the lesser known polysaccharide, fucoidan, to create a multilayer film capable of sequestering growth factor for later release. Fucoidan has been shown to act as a heparin-mimic due to similarities in the structure of the two molecules, however, the binding of fibroblast growth factor-2 to fucoidan has not been demonstrated in a multilayer system.
View Article and Find Full Text PDFPolyelectrolyte multilayers composed of pharmaceutical grade fucoidan and chitosan have been assembled and studied in terms of their response to physiological solution conditions and the presence of lysozyme. The influence of phosphate buffered saline (PBS) solution on the multilayer was interrogated using attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM). The combination of the techniques reveal that the polyelectrolyte multilayers swell when exposed to PBS after build-up and may include a small degree of mass loss as the film swells.
View Article and Find Full Text PDFThe development of novel strategies for the prevention of bacterial infections is of utmost importance because of the exponential growth in the number of patient morbidity related to nosocomial and chronic infections. Nitric oxide (NO) is known to be a potent inhibitor of bacterial growth and adhesion to surfaces. Here, we develop an antibiofilm coating that possesses -nitrosothiol NO donors via plasma polymerization (PP) for biofilm prevention applications.
View Article and Find Full Text PDFAdsorption of carboxymethyl cellulose (CMC) in aqueous solution onto a titania nanoparticle film has been studied using in situ attenuated total reflectance infrared spectroscopy (ATR-IR). CMC was adsorbed onto the positively charged titania surface in neutral, partially charged, and fully charged state. The response of the adsorbed polyelectrolyte layer was monitored upon changing the electrolyte pH and ionic strength.
View Article and Find Full Text PDFHypothesis: Odd-even effects in polysaccharide polyelectrolyte multilayers influence their hydration content and the chemical environment of the water within them.
Experiments: Polysaccharide polyelectrolyte multilayers (PEMs) composed of pharmaceutical grade fucoidan and chitosan were studied under confinement using synchrotron FTIR microspectroscopy at increasing pressure, in order to isolate and measure infrared spectra of water within the PEM, without interference from bulk water. Complementary studies of the PEMs were carried out using lab-based in situ attenuated total reflectance Fourier transform spectroscopy (ATR FTIR) and quartz crystal microbalance with dissipation monitoring (QCM-D), as well as zeta potential measurements, to determine the quantity of adsorbed polymer, hydration content, film thickness, viscoelastic properties and surface charge during layer-by-layer deposition.
The growing number of patient morbidity related to nosocomial infections has placed an importance on the development of new antibacterial coatings for medical devices. Here, we utilize the versatile adhesion property of polydopamine (pDA) to design an antibacterial coating that possesses low-fouling and nitric oxide (NO)-releasing capabilities. To demonstrate this, glass substrates were functionalized with pDA via immersion in alkaline aqueous solution containing dopamine, followed by grafting of low-fouling polymer (poly(ethylene glycol) (PEG)) via Michael addition and subsequent formation of N-diazeniumdiolate functionalities (NO precursors) by purging with NO gas.
View Article and Find Full Text PDFThe interfacial behavior of surfactants present in a natural extract from Quillaja saponaria Molina bark at the air-solution interface is studied by measurements of interfacial tension, interfacial elasticity, and interfacial reflectance FTIR spectroscopy. The active molecule, saponin, is observed directly at the air-solution interface (via reflectance FTIR spectroscopy) above and below the pKa of the molecule, and spectra confirm the altered charge of the interfacial layer at the two solution conditions. For all concentrations of saponin studied, and at pH values below and above pKa (i.
View Article and Find Full Text PDFThe hard milk fat (HMF) fraction of milk fat was isolated via dry, thermal fractionation, followed by a solvent washing process. The resulting HMF crystals were visibly free of entrapped liquid fat, and subsequently characterised by thermal analysis, X-ray diffraction, and electron microscopy. The HMF crystals were found to be mostly β' and β' crystalline structures, with a lamellar thickness of 42.
View Article and Find Full Text PDFSoft polymer films, such as polyelectrolyte multilayers (PEMs), are useful coatings in materials science. The properties of PEMs often rely on the degree of hydration, and therefore the study of these films in a hydrated state is critical to allow links to be drawn between their characteristics and performance in a particular application. In this work, we detail the development of a novel soft contact cell for studying hydrated PEMs (poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride)) using FTIR microspectroscopy.
View Article and Find Full Text PDFPolyethoxylated (PEO) surfactant adsorption to silica under aqueous conditions is an important physical process in a multitude of industries. Consequently, a considerable number of spectroscopic and other studies have been carried out to ascertain the molecular/structural details of the adsorbed surfactant and the kinetics of PEO surfactant adsorption. However, the use of infrared spectroscopy to probe surfactant adsorption at the silica/aqueous solution interface has been limited because of the instability of silica particle films under aqueous conditions and the opacity of silicon prisms below 1300 cm typically employed for these studies.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2017
A polyelectrolyte multilayer (PEM) system based on biopolymers has been constructed and studied in its formation and enzymatic breakdown. The multilayer is composed of fucoidan (a proven antimicrobial/anti-inflammatory seaweed-based polysaccharide) and poly-l-arginine (a polypeptide that can be readily degraded with trypsin to yield arginine, a known NO donor), thus making the multilayer a potential dual action surface treatment for wound dressings. Studies on the formation of the multilayer revealed that the film built-up in the expected stepwise manner with consistent reversal of the zeta potential upon the adsorption of each subsequent polyion.
View Article and Find Full Text PDF