Spectrochim Acta A Mol Biomol Spectrosc
May 2017
The performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermostability of photosystem I (PSI) complexes Terasaki et al. (2007), Iwuchukwu et al. (2010), Kothe et al.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
September 2012
Ferredoxin-NADP(+) reductase (FNR) is a flavoenzyme that catalyses the reduction of NADP(+) in the final step of the photosynthetic electron-transport chain. FNR from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TeFNR) contains an additional 9 kDa domain at its N-terminus relative to chloroplastic FNRs and is more thermostable than those from mesophilic cyanobacteria. With the aim of understanding the structural basis of the thermostability of TeFNR and assigning a structural role to the small additional domain, the gene encoding TeFNR with and without an additional domain was engineered for heterologous expression and the recombinant proteins were purified and crystallized.
View Article and Find Full Text PDFUntil now, the functional and structural characterization of monomeric photosystem 1 (PS1) complexes from Thermosynechococcus elongatus has been hampered by the lack of a fully intact PS1 preparation; for this reason, the three-dimensional crystal structure at 2.5 A resolution was determined with the trimeric PS1 complex [Jordan, P., et al.
View Article and Find Full Text PDFThe development of cellular systems in which the enzyme hydrogenase is efficiently coupled to the oxygenic photosynthesis apparatus represents an attractive avenue to produce H(2) sustainably from light and water. Here we describe the molecular design of the individual components required for the direct coupling of the O(2)-tolerant membrane-bound hydrogenase (MBH) from Ralstonia eutropha H16 to the acceptor site of photosystem I (PS I) from Synechocystis sp. PCC 6803.
View Article and Find Full Text PDF