JMIR Pediatr Parent
October 2024
Background: A smartphone app, Parent Positive, was developed to help parents manage their children's conduct and emotional problems during the COVID-19 pandemic. A randomized controlled trial, Supporting Parents and Kids Through Lockdown Experiences (SPARKLE), found Parent Positive to be effective in reducing children's emotional problems. However, app effectiveness may be influenced by a range of child, family, socioeconomic, and pandemic-related factors.
View Article and Find Full Text PDFJ Med Internet Res
July 2023
Background: Children's conduct and emotional problems increased during the COVID-19 pandemic.
Objective: We tested whether a smartphone parenting support app, Parent Positive, developed specifically for this purpose, reversed these effects in a cost-effective way. Parent Positive includes 3 zones.
Low-income countries are struggling with the health impacts of both surface and groundwater chemical contamination. Although the impact of biological contaminants on children's health is acknowledged, the long-term effects of these and emerging contaminants on young children may be underestimated. To map the existing evidence on health impacts of water contaminated with chemicals on young children (<5 years), we conducted a scoping review to select and organize relevant literature.
View Article and Find Full Text PDFObjectives: The COVID-19 related lockdowns and distancing measures have presented families with unprecedented challenges. A UK-wide cohort study tracking changes in families' mental health since early lockdown (Co-SPACE) found a significant rise in primary school-aged children's behaviour problems and associated family-related stress. Three-quarters of parents in Co-SPACE also reported wanting extra support.
View Article and Find Full Text PDFInjury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury.
View Article and Find Full Text PDFAdult mammalian central nervous system (CNS) neurons are unable to regenerate following axonal injury, leading to permanent functional impairments. Yet, the reasons underlying this regeneration failure are not fully understood. Here, we studied the transcriptome and translatome shortly after spinal cord injury.
View Article and Find Full Text PDFNeurofibromatosis I is a common genetic disorder that results in tumor formation, and predisposes individuals to a range of cognitive/behavioral symptoms, including deficits in attention, visuospatial skills, learning, language development, and sleep, and autism spectrum disorder-like traits. The nf1-encoded neurofibromin protein (Nf1) exhibits high conservation, from the common fruit fly, Drosophila melanogaster, to humans. Drosophila provides a powerful platform to investigate the signaling cascades upstream and downstream of Nf1, and the fly model exhibits similar behavioral phenotypes to mammalian models.
View Article and Find Full Text PDFBrain connectivity maps display a delicate balance between individual variation and stereotypy, suggesting the existence of dedicated mechanisms that simultaneously permit and limit individual variation. We show that during the development of the Drosophila central nervous system, mutual inhibition among groups of neighboring postmitotic neurons during development regulates the robustness of axon target choice in a nondeterministic neuronal circuit. Specifically, neighboring postmitotic neurons communicate through Notch signaling during axonal targeting, to ensure balanced alternative axon target choices without a corresponding change in cell fate.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2012
Chemical synapses are specialist points of contact between two neurons, where information transfer takes place. Communication occurs through the release of neurotransmitter substances from small synaptic vesicles in the presynaptic terminal, which fuse with the presynaptic plasma membrane in response to neuronal stimulation. However, as neurons in the central nervous system typically only possess ~200 vesicles, high levels of release would quickly lead to a depletion in the number of vesicles, as well as leading to an increase in the area of the presynaptic plasma membrane (and possible misalignment with postsynaptic structures).
View Article and Find Full Text PDFVascular endothelial growth factor-D (VEGF-D) is one of the two ligands of the VEGFR-3 receptor on lymphatic endothelial cells. Gene-silencing studies in mice and Xenopus tadpoles recently showed that the role of endogenous VEGF-D in lymphatic development is moderate. By contrast, exogenous VEGF-D is capable of stimulating lymphangiogenesis.
View Article and Find Full Text PDFDrosophila melanogaster is a leading genetic model system in nervous system development and disease research. Using the power of fly genetics in traumatic axonal injury research will significantly speed up the characterization of molecular processes that control axonal regeneration in the CNS. We developed a versatile and physiologically robust preparation for the long-term culture of the whole Drosophila brain.
View Article and Find Full Text PDFThe importance of the lymphangiogenic factor VEGF-D and its receptor VEGFR-3 in early lymphatic development remains largely unresolved. We therefore investigated their role in Xenopus laevis tadpoles, a small animal model allowing chemicogenetic dissection of developmental lymphangiogenesis. Single morpholino antisense oligo knockdown of xVEGF-D did not affect lymphatic commitment, but transiently impaired lymphatic endothelial cell (LEC) migration.
View Article and Find Full Text PDFNovel antiangiogenic strategies with complementary mechanisms are needed to maximize efficacy and minimize resistance to current angiogenesis inhibitors. We explored the therapeutic potential and mechanisms of alphaPlGF, an antibody against placental growth factor (PlGF), a VEGF homolog, which regulates the angiogenic switch in disease, but not in health. alphaPlGF inhibited growth and metastasis of various tumors, including those resistant to VEGF(R) inhibitors (VEGF(R)Is), and enhanced the efficacy of chemotherapy and VEGF(R)Is.
View Article and Find Full Text PDFLymph vessels control fluid homeostasis, immunity and metastasis. Unraveling the molecular basis of lymphangiogenesis has been hampered by the lack of a small animal model that can be genetically manipulated. Here, we show that Xenopus tadpoles develop lymph vessels from lymphangioblasts or, through transdifferentiation, from venous endothelial cells.
View Article and Find Full Text PDF