Retroviral gene transfer and bone marrow transplantation has been used by many investigators to study the role of macrophage proteins in different mouse models of human disease. While this approach is faster and less expensive than generating transgenic mice with macrophage-specific promoters and applicable to a wider array of mouse models, it has been hampered by two major drawbacks: labor-intensive cloning procedures involved in generating retroviral vectors for each gene of interest and low viral titers. Here we describe the construction of a MSCV-based retroviral vector that can serve as an acceptor vector for commercially available Cre-lox-compatible donor vectors.
View Article and Find Full Text PDFObjective: Thiol oxidative stress leads to macrophage dysfunction and cell injury, and has been implicated in the development of atherosclerotic lesions. We investigated if strengthening the glutathione-dependent antioxidant system in macrophages by overexpressing glutathione reductase (GR) decreases the severity of atherosclerosis.
Methods And Results: Bone marrow cells infected with retroviral vectors expressing either enhanced green fluorescent protein (EGFP) or an EGFP-fusion protein of cytosolic GR (GR(cyto)-EGFP) or mitochondrial GR (GR(mito)-EGFP) were transplanted into low-density lipoprotein receptor-deficient mice.
Adriamycin is a widely used antitumor antibiotic, but its use has been limited by its cytotoxicity in both cardiomyocytes and non-cardiac tissues. While adriamycin's ability to redox cycle via one-electron transfer reactions and generate ROS is thought to promote cardiotoxicity, the mechanisms involved in non-cardiac tissue injury are not clear. Here we show that prolonged exposure (48 h) of human monocyte-derived macrophages to adriamycin at concentrations as low as 1 microM promotes caspase-independent cell death.
View Article and Find Full Text PDF