Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events.
View Article and Find Full Text PDFDetecting mutations from single DNA molecules is crucial in many fields but challenging. Next-generation sequencing (NGS) affords tremendous throughput but cannot directly sequence double-stranded DNA molecules ('single duplexes') to discern the true mutations on both strands. Here we present Concatenating Original Duplex for Error Correction (CODEC), which confers single duplex resolution to NGS.
View Article and Find Full Text PDFMutations accumulate in the genome of every cell of the body throughout life, causing cancer and other genetic diseases. Almost all of these mosaic mutations begin as nucleotide mismatches or damage in only one of the two strands of the DNA prior to becoming double-strand mutations if unrepaired or misrepaired. However, current DNA sequencing technologies cannot resolve these initial single-strand events.
View Article and Find Full Text PDFNeural precursor cells (NPCs) transplanted into the adult neocortex generate neurons that synaptically integrate with host neurons, supporting the possibility of achieving functional tissue repair. However, poor survival and functional neuronal recovery of transplanted NPCs greatly limits engraftment. Here, we test the hypothesis that combining blood vessel-forming vascular cells with neuronal precursors improves engraftment.
View Article and Find Full Text PDFThe addition of new neurons to existing neural circuits in the adult brain remains of great interest to neurobiology because of its therapeutic implications. The premier model for studying this process has been the hippocampal dentate gyrus in mice, where new neurons are added to mature circuits during adulthood. Notably, external factors such as an enriched environment (EE) and exercise markedly increase hippocampal neurogenesis.
View Article and Find Full Text PDFFibroblast Growth Factor Receptors (FGFRs) play crucial roles in promoting dendrite growth and branching during development. In mice, three FGFR genes, Fgfr1, Fgfr2, and Fgfr3, remain expressed in the adult neurogenic niche of the hippocampal dentate gyrus. However, the function of FGFRs in the dendritic maturation of adult-born neurons remains largely unexplored.
View Article and Find Full Text PDFL1 is an immunoglobulin domain (Ig)-containing protein essential for a wide range of neurodevelopmental processes highly conserved across species from worms to humans. L1 can act as a cell adhesion molecule by binding to other Ig-containing proteins or as a ligand for certain tyrosine kinase receptors such as FGFRs and TRKs, which are required not only during neurodevelopment but also in hippocampal neurogenesis. Yet, the role of L1 itself in adult hippocampal neurogenesis remains unaddressed.
View Article and Find Full Text PDF