The aim of this study was to stratify risk for postpartum diabetes in women who have gestational diabetes. Women with gestational diabetes were recruited between 1989 and 1999, and 302 were followed with oral glucose tolerance tests at 9 months and 2, 5, 8, and 11 years postpregnancy. The 8-year postpartum diabetes risk was 52.
View Article and Find Full Text PDFLY333531, BIM-1, BIM-2, BIM-3, and BIM-8 are bisindolyl maleimide-based, nanomolar protein kinase C inhibitors. LY333531, a PKCbeta-specific inhibitor, is in clinical trials against diabetes and cardiac ventricular hypertrophy complications. Specificity analysis with a panel of 29 protein kinases reveals that these bisindolyl maleimide inhibitors also inhibit PDK1, a key kinase from the insulin signaling pathway, albeit in the lower microM range.
View Article and Find Full Text PDFBiochim Biophys Acta
April 2003
Vitamin B(6) is an essential component in human diet. However, some organisms have the required machinery for its synthesis. There are two independent and autoexclusive groups of genes, pdx and SOR1.
View Article and Find Full Text PDFPyridoxine 5'-phosphate (PNP) synthase is the last enzyme in the de novo biosynthesis of vitamin B(6) catalyzing the complicated ring-closure reaction between 1-deoxy-D-xylulose-5-phosphate and 1-amino-acetone-3-phosphate. Here we present the crystal structures of four PNP synthase complexes with substrates and substrate analogs. While the overall fold of the enzyme is conserved in all complexes, characteristic readjustments were observed in the active site.
View Article and Find Full Text PDFMolecular chaperones and proteases monitor the folded state of other proteins. In addition to recognizing non-native conformations, these quality control factors distinguish substrates that can be refolded from those that need to be degraded. To investigate the molecular basis of this process, we have solved the crystal structure of DegP (also known as HtrA), a widely conserved heat shock protein that combines refolding and proteolytic activities.
View Article and Find Full Text PDFThreonine synthase catalyzes the final step of threonine biosynthesis, the pyridoxal 5'-phosphate (PLP)-dependent conversion of O-phosphohomoserine into threonine and inorganic phosphate. Threonine is an essential nutrient for mammals, and its biosynthetic machinery is restricted to bacteria, plants, and fungi; therefore, threonine synthase represents an interesting pharmaceutical target. The crystal structure of threonine synthase from Saccharomyces cerevisiae has been solved at 2.
View Article and Find Full Text PDF