Publications by authors named "Marta Gambucci"

Surface-enhanced Raman scattering (SERS) is a widely used technique for drug detection due to high sensitivity and molecular specificity. The applicability and selectivity of SERS in the detection of specific drug molecules can be improved by gathering information on the specific interactions occurring between the molecule and the metal surface. In this work, multilayer gold-silver bimetallic nanorods (Au@Ag@AuNRs) have been prepared and used as platforms for SERS detection of specific drugs (namely promethazine, piroxicam, furosemide and diclofenac).

View Article and Find Full Text PDF

In this work we report the preparation and characterization of free-standing keratin-based films containing Au/Ag nanorods. The effect of nanorods surface chemistry on the optical and mechanical properties of keratin composite films is fully investigated. Colloid nanorods confer to the keratin films interesting color effects due to plasmonic absorptions of the metal nanostructures.

View Article and Find Full Text PDF
Article Synopsis
  • DNA-stabilized silver nanoclusters (DNA-AgNCs) are gaining attention for their potential in imaging and sensing applications, but their full spectroscopic properties are still under investigation.
  • This study focused on the spectroscopic characteristics of red-emitting DNA-AgNCs across different pH levels (5 to 9) and ionic strengths (0.005 to 0.5), finding that purified samples maintained consistent photophysical properties apart from extreme conditions.
  • The research also revealed that while non-purified DNA-AgNCs showed no significant changes with varying pH or ionic strength, there were notable differences in their rotational correlation times compared to purified samples.
View Article and Find Full Text PDF

The comprehension and control of the interactions between nanoparticles and proteins at a molecular level are crucial to improve biomedical applications of nanomaterials and to develop nanosystems able to influence and regulate the conformational changes in proteins. In this work, we explore the interactions between Gramicidin A peptide (GramA) and dodecanethiol-stabilized small silver nanoparticles (D-AgNPs), paying particular attention to the effect on GramA conformation in POPC bilayers. D-AgNPs have been prepared to have dimensions (5 nm) and a hydrophobic nature compatible with the POPC lipid bilayer.

View Article and Find Full Text PDF

The immobilization of proteins on inorganic supports is attracting increasing interest since the realization of active surfaces finds application in enzyme-assisted catalysis, environmental sciences, and medical fields. In the present study, cytochrome c (cyt c) is adsorbed on silica nanoparticles (SNPs) and amino-functionalized silica nanoparticles (SNPs-APTES), which are prepared for this purpose and having a diameter of about 50 nm. The peroxidase activity of the protein is investigated under different experimental conditions, to evaluate the impact of differently charged surfaces on the catalytic activity of the biomolecule.

View Article and Find Full Text PDF

Transmembrane proteins play important roles in intercellular signaling to regulate interactions among the adjacent cells and influence cell fate. The study of interactions between membrane proteins and nanomaterials is paramount for the design of nanomaterial-based therapies. In the present work, the fluorescence properties of the transmembrane receptor Notch2 have been investigated.

View Article and Find Full Text PDF

The use of plasmonic nanomaterials is a challenging strategy to control radiation and radiation-induced processes at a nanometric scale. The localized surface plasmons of metal nanoparticles have been shown to affect the efficiency of a variety of radiative and non-radiative processes occurring in organic molecules. In this contribution, we present an overview of the results obtained through an original approach based on the hierarchical assembly of plasmonic gold colloids on silica templates, covalently doped with organic dyes.

View Article and Find Full Text PDF

The preparation of tailored nanomaterials able to support cell growth and viability is mandatory for tissue engineering applications. In the present work, silica nanoparticles were prepared by a sol-gel procedure and were then functionalized by condensation of amino groups and by adsorption of silver nanoparticles. Transmission electron microscopy (TEM) imaging was used to establish the morphology and the average dimensions of about 130 nm, which were not affected by the functionalization.

View Article and Find Full Text PDF