Natural killer (NK) cells play an important role in the surveillance of viral infections and cancer. NK cell antibody-dependent cellular cytotoxicity (ADCC) and direct cytotoxicity are mediated by the recognition of antibody-coated target cells through the Fc gamma receptor IIIA (FcγRIIIa/CD16) and by ligands of activating/inhibitory NK receptors, respectively. Allelic variants of the gene include the high-affinity single-nucleotide polymorphism (SNP) rs396991 (V176F), which is associated with the efficacy of monoclonal antibody (mAb) therapies, and the SNP rs10127939 (L66H/R).
View Article and Find Full Text PDFAntibiotic resistance poses an increasing threat to global health. To tackle this problem, the identification of principal reservoirs of antibiotic resistance genes (ARGs) plus an understanding of drivers for their evolutionary selection are important. During a PCR-based screen of ARGs associated with integrons in saliva-derived metagenomic DNA of healthy human volunteers, two novel variants of genes encoding a D-alanine-D-alanine ligase (ddl6 and ddl7) located within gene cassettes in the first position of a reverse integron were identified.
View Article and Find Full Text PDFNK cell-mediated Ab-dependent cellular cytotoxicity (ADCC) is increasingly recognized to play an important role in cancer immunotherapy, transplant rejection, and autoimmunity. However, several aspects of the molecular interactions of IgG subclasses with the Fc-gamma receptor IIIA (FcγRIIIA)/CD16a expressed on NK cells remain unknown. The aim of the current study was to further analyze the role of IgG subclasses and FCGR3A V158F single nucleotide polymorphism (SNP) on Ca signaling and NK cell-mediated ADCC against Daudi target cells in vitro.
View Article and Find Full Text PDF