Publications by authors named "Marta Francisco"

The impact of different pressure levels in the HHP-assisted hydrolysis by Alcalase of quinoa proteins on the catalytic efficiency, peptide release, phenolic compounds content, and biological activities was investigated. The protein profile (SDS-PAGE) showed a more extensive peptide breakdown for the HHP-assisted proteolysis at 300-400 MPa, which was confirmed by the higher extent of hydrolysis and peptide concentration. Quinoa protein hydrolysates (QPH) produced at 200 and 300 MPa exhibited higher total phenolic contents and antioxidant activities (methanol-acetone and aqueous extracts) when compared to the non-hydrolyzed (QPI) and non-pressurized hydrolyzed samples.

View Article and Find Full Text PDF

Alterations in plant metabolism play a key role in the complex plant-pathogen interactions. However, there is still a lack of knowledge about the connection between changes in primary and specialized metabolism and the plant defense against diseases that impact crops. Thus, we aim to study the metabolic reprograming in plants upon infection by pv.

View Article and Find Full Text PDF

Our results indicate caterpillars and aphids cause similar levels of induced defences and resistance against caterpillars in wild cotton plants. These symmetrical effects are not consistent with patterns predicted by plant defensive signaling crosstalk and call for further work addressing the biochemical mechanisms underpinning these results. Plant-induced responses to attack often mediate interactions between different species of insect herbivores.

View Article and Find Full Text PDF

Plant responses against pathogens are influenced by growth immunity tradeoff, which ensure the best use of limited resources. We study how the immobilization of carbon resources and the induction of defensive responses (glucosinolates, phenolic compounds, stomatal closure) can influence the biomass of two Brassica oleracea lines, differing in their resistance, after infection with Xanthomonas campestris pv. campestris.

View Article and Find Full Text PDF

A large subset of plant stress-signaling pathways, including those related with chemical defense production, exhibit diurnal or circadian oscillations. However the extent to which diurnal or circadian time influences the stress mediated accumulation of plant specialized metabolites remains largely unknown. Because plant responses to physical stress (e.

View Article and Find Full Text PDF

Associational resistance theory predicts that insect herbivory decreases with increasing tree diversity in forest ecosystems. However, the generality of this effect and its underlying mechanisms are still debated, particularly since evidence has accumulated that climate may influence the direction and strength of the relationship between diversity and herbivory.We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of silver birch in pure and mixed plots with different tree species composition across 12 tree diversity experiments in different climates.

View Article and Find Full Text PDF

Plant metabolism is modulated by a complex interplay between internal signals and external cues. A major goal of all quantitative metabolomic studies is to clone the underlying genes to understand the mechanistic basis of this variation. Using fine-scale genetic mapping, in this work we report the identification and initial characterization of NAD-DEPENDENT MALIC ENZYME 1 (NAD-ME1) as the candidate gene underlying the pleiotropic network Met.

View Article and Find Full Text PDF

The genus includes one of the 10 most agronomically and economically important plant groups in the world. Within this group, we can find examples such as broccoli, cabbage, cauliflower, kale, Brussels sprouts, turnip or rapeseed. Their cultivation and postharvest are continually threatened by significant stresses of biotic origin, such as pathogens and pests.

View Article and Find Full Text PDF

Herbivory is strongly influenced by different sources of plant variation, from traits such as secondary metabolites to features associated with population- and community-level variation. However, most studies have assessed the influence of these drivers in isolation. We conducted a large-scale study to evaluate the associations between multiple types of plant-based variation and insect leaf herbivory in alder ( Alnus glutinosa) trees sampled in riparian forests throughout northwestern Spain.

View Article and Find Full Text PDF

Glucosinolates (GSLs) are secondary metabolites present in Brassicaceae species implicated in their defense against plant pathogens. When a pathogen causes tissue damage, the enzyme myrosinase hydrolyzes GSLs into diverse products that exhibit antimicrobial activity against a wide range of bacteria and fungi in vitro. It was demonstrated that modulation of GSL content in vivo affects plant resistance to infection by pathogens in .

View Article and Find Full Text PDF

Black rot, caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), produces important economic losses in crops of Brassica oleracea worldwide. Resistance to race 1, the most virulent and widespread in B.

View Article and Find Full Text PDF

Elevational gradients have been highly useful for understanding the underlying forces driving variation in plant traits and plant-insect herbivore interactions. A widely held view from these studies has been that greater herbivory under warmer and less variable climatic conditions found at low elevations has resulted in stronger herbivore selection on plant defences. However, this prediction has been called into question by conflicting empirical evidence, which could be explained by a number of causes such as an incomplete assessment of defensive strategies (ignoring other axes of defence such as defence inducibility) or unaccounted variation in abiotic factors along elevational clines.

View Article and Find Full Text PDF

Studies reporting domestication effects on plant defences have focused on constitutive, but not on induced defences. However, theory predicts a trade-off between constitutive (CD) and induced defences (ID), which intrinsically links both defensive strategies and argues for their joint consideration in plant domestications studies. We measured constitutive and induced glucosinolates in wild cabbage (Brassica oleracea ssp.

View Article and Find Full Text PDF

Coordination of plant circadian rhythms with the external environment provides growth and reproductive advantages to plants as well as enhanced resistance to insects and pathogens. Since glucosinolates (GLSs) play a major role as plant defensive compounds and could affect the palatability and health value of edible crops, the aim of this study was to investigate the species-specific patterns in circadian rhythmicity of these plant phytochemicals. Five different GLS-containing cultivars, from three Brassica crop species were studied.

View Article and Find Full Text PDF

Biogeographical factors and phylogenetic history are key determinants of inter-specific variation in plant defences. However, few studies have conducted broad-scale geographical comparisons of plant defences while controlling for phylogenetic relationships, and, in doing so, none have separated constitutive from induced defences. This gap has limited our understanding of how historical or large-scale processes mediate biogeographical patterns in plant defences since these may be contingent upon shared evolutionary history and phylogenetic constraints.

View Article and Find Full Text PDF

There is increasing evidence that the circadian clock is a significant driver of plant phytochemicals. However, little is known about the clock effect on antioxidant metabolites in edible crops. Thus, the aim of the present investigation was to study whether the antioxidant potential of Brassica cultivars is under circadian regulation and its relationship with polyphenol content.

View Article and Find Full Text PDF

Despite the growing number of studies showing that genotype × environment and epistatic interactions control fitness, the influences of epistasis × environment interactions on adaptive trait evolution remain largely uncharacterized. Across three field trials, we quantified aliphatic glucosinolate (GSL) defense chemistry, leaf damage, and relative fitness using mutant lines of Arabidopsis thaliana varying at pairs of causal aliphatic GSL defense genes to test the impact of epistatic and epistasis × environment interactions on adaptive trait variation. We found that aliphatic GSL accumulation was primarily influenced by additive and epistatic genetic variation, leaf damage was primarily influenced by environmental variation and relative fitness was primarily influenced by epistasis and epistasis × environment interactions.

View Article and Find Full Text PDF

A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant.

View Article and Find Full Text PDF

Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood.

View Article and Find Full Text PDF

Phenolic compounds are proving to be increasingly important for human health and in crop development, defense and adaptation. In spite of the economical importance of Brassica crops in agriculture, the mechanisms involved in the biosynthesis of phenolic compounds presents in these species remain unknown. The genetic and metabolic basis of phenolics accumulation was dissected through analysis of total phenolics concentration and its individual components in leaves, flower buds, and seeds of a double haploid (DH) mapping population of Brassica oleracea.

View Article and Find Full Text PDF

Understanding plant's defense mechanisms and their response to biotic stresses is of fundamental meaning for the development of resistant crop varieties and more productive agriculture. The Brassica genus involves a large variety of economically important species and cultivars used as vegetable source, oilseeds, forage and ornamental. Damage caused by pathogens attack affects negatively various aspects of plant growth, development, and crop productivity.

View Article and Find Full Text PDF

Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes.

View Article and Find Full Text PDF