Publications by authors named "Marta Fik-Jaskolka"

This review explores the potential of antimicrobial metabolites derived from Caucasian medicinal plants as alternatives to conventional antibiotics. With the rise of antibiotic resistance posing a global health threat, there is a pressing need to investigate alternative sources of antimicrobial agents. Caucasian medicinal plants have traditionally been used for their therapeutic properties, and recent research has highlighted their potential as sources of antimicrobial compounds.

View Article and Find Full Text PDF

This study presents the chemical synthesis, purification, and characterization of a novel non-natural synthetic amino acid. The compound was synthesized in solution, purified, and characterized using NMR spectroscopy, polarimetry, and melting point determination. Dynamic Light Scattering (DLS) analysis demonstrated its ability to form aggregates with an average size of 391 nm, extending to the low micrometric size range.

View Article and Find Full Text PDF

Inorganic-organic hybrid materials that combine both Polyoxometalates (POMs) and metal ion coordinating subunits (CSUs) represent promising multifunctional materials. Though their individual components are often biologically active, utilization of hybrid materials in bioassays significantly depends on the functionalization method and thus resulting stability of the system. Quite intriguingly, these aspects were very scarcely studied in hybrid materials based on the Wells-Dawson POM (WD POM) scaffold and remain unknown.

View Article and Find Full Text PDF

The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the RNA from yeast Saccharomyces cerevisiae (herein simply indicated as RNA). In more detail, by condensing p-xylylenediamine and a series of aldehydes, we obtained the following Schiff base ligands: 2-thiazolecarboxaldehyde (), pyridine-2-carboxaldehyde (), 5-methylisoxazole-3-carboxaldehyde (), 1-methyl-2-imidazolecarboxaldehyde (), and quinoline-2-carboxaldehyde ().

View Article and Find Full Text PDF

The new homodinuclear complexes of the general formula [Ln(NO)] (where is newly synthesized 2-((2-(benzoxazol-2-yl)-2-methylhydrazono)methyl)phenol and Ln = Sm (), Eu (), Tb (, ), Dy (), Ho (), Er (), Tm (), Yb ()), have been synthesized from the lanthanide(III) nitrates with the polydentate hydrazone Schiff base ligand. The flexibility of this unsymmetrical Schiff base ligand containing NO binding moiety, attractive for lanthanide metal ions, allowed for a self-assembly of these complexes. The compounds were characterized by spectroscopic data (ESI-MS, IR, UV/Vis, luminescence) and by the X-ray structure determination of the single crystals, all of which appeared to be different solvents.

View Article and Find Full Text PDF

Multivalent molecules are a potential group of bioactive compounds endowed with high affinity and specificity in innovative biomolecule-targeting therapeutic approaches. Herein, we report on a new and versatile N,N,N,N-donor ligand L (1,4)-N1,N4-bis(quinolin-2-ylmethylene)cyclohexane-1,4-diamine with two coordinating quinoline moieties connected with -1,4-diaminocyclohexane. It coordinates Cu forming a [2 × 2] square grid-type complex C1 [CuL] and Ni giving a triangle-type complex C2 [NiL].

View Article and Find Full Text PDF

Generation of well-defined potential metallotherapeutics for cancer treatment, one of the most population-threatening diseases, is challenging and an active area of modern research in view of their unique properties and thus multiple possible pathways of action in cells. Specifically, Schiff base ligands were recognized as very promising building blocks for the construction of stable and active complexes of numerous geometries and topologies. Incorporation of Ag(I) ions allows for the formation of flat complexes with potential unoccupied coordination sites, thus giving rise to specific interactions between the metallotherapeutic and biomolecule of interest.

View Article and Find Full Text PDF

Herein we present a mononuclear lanthanum(III) complex obtained in a template cyclocondensation reaction of lanthanum(III) nitrate salt, 1,2-propanediamine, and 2,6-diacetylpyridine ( complex). A preliminary investigation of the biological potential of this compound was conducted using a biomedically relevant target Tel26. We found that, different from parallel G4, antiparallel G4, and duplex DNA, only a hybrid-type G4 structure of Tel26 in a K solution was significantly stabilized by ≥7 °C, which emerged in our UV melting studies.

View Article and Find Full Text PDF

The understanding and the application of reversible covalent reactions and coordination chemistry together with the proper design of the molecular frameworks, allow to achieve not only well-defined output architectures but also different grades of complex behavior. In this work, the dynamic nature of the helical systems offers an additional level of complexity by combining self-sorting on two levels: 1) the build-up of the ligand strand constituents from their components through dynamic covalent chemistry; 2) the assembly of the helicates from the ligands and the metal cations through dynamic metallo-supramolecular chemistry. The information encoded in the ligands constituent molecule was read differently (and accurately at the same time) by metal cations that varied in the coordination algorithms.

View Article and Find Full Text PDF

Herein, we described the synthesis of two L-phenylalanines α-derivatized with a terminal alkyne moiety whose structures differed by phenyl ring halogen substitution (two o-Cl in 1 vs. one p-Br in 2) and investigated their effect on biological macromolecules and living cells. We explored their interaction with quadruplex DNA (G4 DNA), using tel and c-myc as models, and bovine serum albumin (BSA).

View Article and Find Full Text PDF

Generation of well-defined organic-inorganic hybrid materials with controllable size and morphology is challenging and an active area of modern research in view of their unique properties and thus multifunctional applications. Specifically polyoxometalates (POMs) were recognized as a very promising group for the construction of those systems, nonetheless there are domains where the profound understanding of hierarchical mutual interactions and assembly are lacking. We present an efficient approach towards the synthesis of a novel group of POM-based nanocomposites that we name Complex-Decorated Surfactant Encapsulated-Clusters (CD-SECs).

View Article and Find Full Text PDF

Herein, we present a spectroscopic (CD and UV) and SEM study of a phenylalanine derivative carrying a terminal alkyne moiety and indicated by us CF3IIIPhe, with particular attention to its interaction with Cu(II) cation and some biological macromolecules, as well as a preliminary evaluation of its effect on cancerous cells. CD spectroscopy evidenced the ability of CF3IIIPhe to interact with tel and c-myc, two quadruplex DNA (G4 DNA) models explored in this study. Other CD and UV studies revealed the ability of the unnatural amino acid to form aggregates in aqueous solution, to bind Cu(II) cation, and to interact with bovine serum albumin (BSA).

View Article and Find Full Text PDF

Elucidation of the structure and function of biomolecules provides us knowledge that can be transferred into the generation of new materials and eventually applications in e.g., catalysis or bioassays.

View Article and Find Full Text PDF