Scientific literature is inundated with secondary metabolites from marine sources. In this ocean of natural products, the presence of recurring patterns has traditionally led scientists to unravel the biosynthetic mechanisms that naturally yield these products, as well as to imitate Nature to prepare them in the laboratory, especially when promising bioactivities and stimulating molecular architectures are involucrate. For instance, natural products containing multisubstituted oxygenated rings and macrocyclic lactones are recurrently selected as targets for developing total syntheses.
View Article and Find Full Text PDFA direct and general method for the synthesis of naturally occurring 2,3,4,5,6-pentasubstituted tetrahydropyrans has been developed, employing β,γ-unsaturated N-acyl oxazolidin-2-ones as key starting materials. The combination of the Evans aldol addition and the Prins cyclization allowed the diastereoselective and efficient generation of the desired oxacycles in two fashions: a one-pot Evans aldol-Prins protocol, in which five new σ bonds and five contiguous stereocenters were straightforwardly generated, and a two-step version, which additionally permitted the isolation of β,γ-unsaturated alcohol precursors bearing an N-acyl oxazolidin-2-one in the α position. From these alcohols were also obtained halogenated pentasubstituted tetrahydropyrans as well as 2,3,4,5-tetrasubstituted tetrahydrofurans, shedding light on the mechanism of the process.
View Article and Find Full Text PDF