Publications by authors named "Marta Estrader"

With their distinctive physicochemical features, nanoparticles have gained recognition as effective multifunctional tools for biomedical applications, with designs and compositions tailored for specific uses. Notably, magnetic nanoparticles stand out as first-in-class examples of multiple modalities provided by the iron-based composition. They have long been exploited as contrast agents for magnetic resonance imaging (MRI) or as anti-cancer agents generating therapeutic hyperthermia through high-frequency magnetic field application, known as magnetic hyperthermia (MHT).

View Article and Find Full Text PDF

Magnetic nanoparticles (NPs) are attractive both for their fundamental properties and for their potential in a variety of applications ranging from nanomedicine and biology to micro/nanoelectronics and catalysis. While these fields are dominated by the use of iron oxides, reduced metal NPs are of interest since they display high magnetization and adjustable anisotropy according to their size, shape and composition. The use of organometallic precursors makes it possible to adjust the size, shape (sphere, cube, rod, wire, urchin, …) and composition (alloys, core-shell, composition gradient, dumbbell, …) of the resulting NPs and hence their magnetic properties.

View Article and Find Full Text PDF

Interfaces play a crucial role in composite magnetic materials and particularly in bimagnetic core/shell nanoparticles. However, resolving the microscopic magnetic structure of these nanoparticles is rather complex. Here, we investigate the local magnetization of antiferromagnetic/ferrimagnetic FeO/FeO core/shell nanocubes by electron magnetic circular dichroism (EMCD).

View Article and Find Full Text PDF

Understanding the microstructure in heterostructured nanoparticles is crucial to harnessing their properties. Although microscopy is ideal for this purpose, it allows for the analysis of only a few nanoparticles. Thus, there is a need for structural methods that take the whole sample into account.

View Article and Find Full Text PDF

The Fischer-Tropsch synthesis (FTS) is a structure-sensitive exothermic reaction that enables catalytic transformation of syngas to high quality liquid fuels. Now, monolithic cobalt-based heterogeneous catalysts were elaborated through a wet chemistry approach that allows control over nanocrystal shape and crystallographic phase, while at the same time enables heat management. Copper and nickel foams have been employed as supports for the epitaxial growth of hcp-Co nanowires directly from a solution containing a coordination compound of cobalt and stabilizing ligands.

View Article and Find Full Text PDF

Although cubic rock salt-CoO has been extensively studied, the magnetic properties of the main nanoscale CoO polymorphs (hexagonal wurtzite and cubic zinc blende structures) are rather poorly understood. Here, a detailed magnetic and neutron diffraction study on zinc blende and wurtzite CoO nanoparticles is presented. The zinc blende-CoO phase is antiferromagnetic with a 3rd type structure in a face-centered cubic lattice and a Néel temperature of T (zinc-blende) ≈225 K.

View Article and Find Full Text PDF

In this work, the use of cluster analysis algorithms, widely applied in the field of big data, is proposed to explore and analyze electron energy loss spectroscopy (EELS) data sets. Three different data clustering approaches have been tested both with simulated and experimental data from FeO/MnO core/shell nanoparticles. The first method consists on applying data clustering directly to the acquired spectra.

View Article and Find Full Text PDF

A bis(pyrazolylpyridyl) ligand, L, containing a central photochromic dithienylethene spacer predictably forms a ferrous [Fe L ] helicate exhibiting spin crossover (SCO). In solution, the compound [Fe L ](ClO ) (1) preserves the magnetic properties and is fluorescent. The structure of 1 is photo-switchable following the reversible ring closure/opening of the central dithienylethene via irradiation with UV/visible light.

View Article and Find Full Text PDF

Controlling the charges and spins of molecules lies at the heart of spintronics. A photoswitchable molecule consisting of two independent spins separated by a photoswitchable moiety was designed in the form of new ligand H L, which features a dithienylethene photochromic unit and two lateral coordinating moieties, and yields molecules with [MM⋅⋅⋅MM] topology. Compounds [M L (py) ] (M=Cu, 1; Co, 2; Ni, 3; Zn, 4) were prepared and studied by single-crystal X-ray diffraction (SCXRD).

View Article and Find Full Text PDF

The interaction of Mn(ClO)·6HO with salicylaldoxime (Hsao) in the presence of nonsteroidal anti-inflammatory drug (NSAID) sodium diclofenac (Nadicl) or indomethacin (Hindo) leads to the formation of the hexanuclear Mn(III) clusters [Mn(O)(dicl)(sao)(CHOH)] (1) and [Mn(O)(indo)(sao)(HO)] (2) both characterized as stepladder inverse-9-metallacrown-3 accommodating dicl or indo ligands, respectively. When the interaction of MnCl·4HO with Nadicl or Hindo is in the absence of Hsao, the mononuclear Mn(II) complexes [Mn(dicl)(CHOH)] (3) and [Mn(indo)(CHOH)] (4) were isolated. The complexes were characterized by physicochemical and spectroscopic techniques, and the structure of complexes 1 and 2 was characterized by X-ray crystallography.

View Article and Find Full Text PDF

The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.

View Article and Find Full Text PDF

The intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated.

View Article and Find Full Text PDF

Core-shell nanoparticles attract continuously growing interest due to their numerous applications, which are driven by the possibility of tuning their functionalities by adjusting structural and morphological parameters. However, despite the critical role interdiffused interfaces may have in the properties, these are usually only estimated in indirect ways. Here we directly evidence the existence of a 1.

View Article and Find Full Text PDF

Physicochemical properties of transition metal oxides are directly determined by the oxidation state of the metallic cations. To address the increasing need to accurately evaluate the oxidation states of transition metal oxide systems at the nanoscale, here we present "Oxide Wizard." This script for Digital Micrograph characterizes the energy-loss near-edge structure and the position of the transition metal edges in the electron energy-loss spectrum.

View Article and Find Full Text PDF

The controlled filling of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic FexCo3-xO4 nanolayers is presented as a proof-of-concept toward the integration of nanosized units in highly ordered, heterostructured 3D architectures. Antiferromagnetic (AFM) Co3O4 mesostructures are obtained as negative replicas of KIT-6 silica templates, which are subsequently coated with ferrimagnetic (FiM) FexCo3-xO4 nanolayers. The tuneable magnetic properties, with a large exchange bias and coercivity, arising from the FiM/AFM interface coupling, confirm the microstructure of this novel two-phase core-shell mesoporous material.

View Article and Find Full Text PDF

Here it is demonstrated that multiple-energy, anomalous small-angle X-ray scattering (ASAXS) provides significant enhancement in sensitivity to internal material boundaries of layered nanoparticles compared with the traditional modeling of a single scattering energy, even for cases in which high scattering contrast naturally exists. Specifically, the material-specific structure of monodispersed Fe₃O₄|γ-Mn₂O₃ core|shell nanoparticles is determined, and the contribution of each component to the total scattering profile is identified with unprecedented clarity. We show that Fe₃O₄|γ-Mn₂O₃ core|shell nanoparticles with a diameter of 8.

View Article and Find Full Text PDF

Electron tomography is a widely spread technique for recovering the three dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to date, energy filtering of the images in the transmission electron microscope (EFTEM) is the usual spectroscopic method even if most of the information in the spectrum is lost.

View Article and Find Full Text PDF

Magnetic multilayered, onion-like, heterostructured nanoparticles are interesting model systems for studying magnetic exchange coupling phenomena. In this work, we synthesized heterostructured magnetic nanoparticles composed of two, three, or four components using iron oxide seeds for the subsequent deposition of manganese oxide. The MnO layer was allowed either to passivate fully in air to form an outer layer of Mn(3)O(4) or to oxidize partially to form MnO|Mn(3)O(4) double layers.

View Article and Find Full Text PDF

Three novel mixed bridged trinuclear and one tetranuclear copper(II) complexes of tridentate NNO donor Schiff base ligands [Cu(3)(L(1))(2)(mu(1,1)-N(3))(2)(CH(3)OH)(2)(BF(4))(2)] (1), [Cu(3)(L(1))(2)(mu(1,1)-N(3))(2)(mu-NO(3)-1kappaO:2kappaO')(2)] (2), [Cu(3)(L(2))(2)(mu(1,1)-N(3))(2)(mu-NO(3)-1kappaO:2kappaO')(2)] (3) and [Cu(4)(L(3))(2)(mu(1,1)-N(3))(4)(mu-CH(3)COO-1kappaO:2kappaO')(2)] (4) have been synthesized by reaction of the respective tridentate ligands (L(1) = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol, L(2) = 2-[1-(2-diethylamino-ethylimino)-ethyl]-phenol, L(3) = 2-[1-(2-dimethylamino-ethylimino)-methyl]-phenol) with the corresponding copper(ii) salts in the presence of NaN(3). The complexes are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Complex 1 is composed of two terminal [Cu(L(1))(mu(1,1)-N(3))] units connected by a central [Cu(BF(4))(2)] unit through nitrogen atoms of end-on azido ligands and a phenoxo oxygen atom of the tridentate ligand.

View Article and Find Full Text PDF

The magnetic properties of bimagnetic core/shell nanoparticles consisting of an antiferromagnetic MnO core and a ferrimagnetic passivation shell have been investigated. It is found that the phase of the passivation shell (gamma-Mn(2)O(3) or Mn(3)O(4)) depends on the size of the nanoparticles. Structural and magnetic characterizations concur that while the smallest nanoparticles have a predominantly gamma-Mn(2)O(3) shell, larger ones have increasing amounts of Mn(3)O(4).

View Article and Find Full Text PDF

Three new polynuclear copper(II) complexes of singly deprotonated L-glutamic acid (L-glu), {[Cu(bipy)2][Cu(bipy)(L-glu)H2O]2(BF4)4 x (H2O)3}n (1), {[Cu(bipy)(L-glu)H2O][Cu(bipy)(L-glu)(ClO4)](ClO4) x (H2O)2}n (2) and [Cu(phen)(L-glu)H2O]2(NO3)2 x (H2O)4 (3) (bipy = 2,2-bipyridine, phen = 1,10-phenanthroline), were synthesized in acidic pH (ca. 2.5) and characterized structurally.

View Article and Find Full Text PDF

Formation of a quasi-symmetrical mu 3-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu 3-CO 3){Ni 2(salmeNH) 2(NCS) 2}{Ni(salmeNH 2) 2].Et 2O.H 2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO 2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH) 2].

View Article and Find Full Text PDF

The reaction of Ln(NO3)3.aq with K3[Cr(CN)6] and 2,2'-bipyridine (bpy) in a water/ethanol solution led to two families of complexes: 4 one-dimensional (1D) complexes of the formula trans-[Cr(CN)4(mu-CN)2Ln(H2O)3(bpy)2]n.4nH2O.

View Article and Find Full Text PDF