Publications by authors named "Marta Diaz-Garcia"

We compared the number of Aedes aegypti females per trap and the number of detections of this mosquito species per week during 8 wk in 3 types of autocidal gravid traps, the Centers for Disease Control and Prevention (CDC) Autocidal Gravid Ovitrap (AGO), Biogents Gravid Aedes Trap (GAT), and Singapore Gravitrap (SGT), in central Puerto Rico. These traps use the same principles for attracting gravid Ae. aegypti females as traditional ovitraps, such as dark colors, standing water, and decomposing plant materials.

View Article and Find Full Text PDF

The deterioration of oil-based products during processing, distribution and storage has a major negative impact on the industry from an economic point of view. The spoilage of oil is mainly due to its oxidation which can be triggered by various factors, such as UV light, heating or the presence of impurities that result in the formation of radical species. In this context, several packaging alternatives have recently been developed with the aim to protect and extend the shelf life of oil-based products.

View Article and Find Full Text PDF

Nowadays, proteins and polysaccharides play a fundamental role in the manufacturing of biocompatible materials applied in food packaging. The resulting films have, however, limits associated with the resistance to mechanical stress; therefore, it is important to reinforce the initial mixture with additives that promote the development of stronger molecular links. Carbon dots (CDs) are excellent candidates for this purpose due to the presence of surface functional groups that determine the formation of numerous intramolecular bonds between the charged biopolymers.

View Article and Find Full Text PDF

Lipids are widely distributed in nature and are one of the most important components of natural foods, synthetic compounds, and emulsions. To date, there is a strong social demand in the industrial sector for the use of sustainable products with a minimal environmental impact. Depending on their origin and composition, lipids can be employed as a plausible alternative as biodegradable lubricants in order to reduce the use of conventional mineral oil lubricants and mitigate their environmental impact.

View Article and Find Full Text PDF

Mass-trapping has been used to control outbreaks of Aedes aegypti (Linnaeus) (Diptera: Culicidae) in Puerto Rico since 2011. We investigated the effect of multi-year, insecticide-free mass trapping had on the insecticide susceptibility profile of Ae. aegypti.

View Article and Find Full Text PDF

Carbon dots (CDs) due to their unique optical features, chemical stability and low environmental hazard are applied in different fields such as metal ion sensing, photo-catalysis, bio-imaging and tribology, among others. The aims of the present research were to obtain CDs from vegetable wastes (tea and grapes) as carbon sources and to explore their potential properties as radical scavengers. CDs from glutathione/citric acid (GCDs) were synthetized for comparison purposes.

View Article and Find Full Text PDF

The presence of water in lubricant oils is a parameter related to the lubricant deterioration, which can be indicative of a serious loss of tribological efficiency and, therefore, an increase in maintenance costs. Likewise, controlling the aging of the lubricant oil is a keynote issue to prevent damage on the lubricated surfaces (e.g.

View Article and Find Full Text PDF

Metal oxide nanoparticles of different nature have been used in different fields such as therapeutics, biomarkers, tribology or environmental remediation, among others. Besides, the surface modification of such nanoparticles is of particular interest to bring designed functions. In this paper we describe the synthesis of CuO nanoparticles with two different geometries (spherical and prolate) and decorated with long alkyl chains in order to use as dye removers by adsorption and/or photo-degradation of a persistent model dye (Congo Red) and as lubricant additives to improve the tribological performance of base lubricant oils.

View Article and Find Full Text PDF

Background And Objective: Several trials have evaluated the effect of disease management programs in heart failure (HF) with diverse results. The aim of this study was to develop a simple nurse-led clinic intervention program for patients with HF and assess whether this intervention positively affects the prognosis of patients, their care costs and perceived quality of life (QoL).

Methods: Between 2011 and 2013, 127 patients with reduced ejection fraction were prospectively randomly allocated (1:2) to standard care or intervention program.

View Article and Find Full Text PDF

In this study, the in vitro uptake by fibroblasts and in vivo biodistribution of 15 nm 11-mercaptoundecanoicacid-protected gold nanoparticles (AuNPs-MUA) and 3 nm glutathione- and 3 nm bovine serum albumin-protected gold nanoclusters (AuNCs@GSH and AuNCs@BSA, respectively) were evaluated. In vitro cell viability was examined after gold nanoparticle treatment for 48 h, based on MTT assays and analyses of morphological structure, the cycle cell, cellular doubling time, and the gold concentration in cells. No potential toxicity was observed at any studied concentration (up to 10 ppm) for AuNCs@GSH and AuNCs@BSA, whereas lower cell viability was observed for AuNPs-MUA at 10 ppm than for other treatments.

View Article and Find Full Text PDF

One of the main drawbacks in the application of metal-oxide nanoparticles as lubricant additives is their poor stability in organic media, despite the good anti-wear, friction-reducing and high-load capacity properties described for these materials. In this work, we present a novel procedure to chemically cap the surface of ZrO nanoparticles (ZrONPs) with long hydrocarbon chains in order to obtain stable dispersions of ZrONPs in non-aqueous media without disrupting their attributes as lubricant additives. C-8, C-10 and C-16 saturated flexible chains were attached to the ZrONP surface and their physical and chemical characterization was performed by transmission electron microscopy, thermogravimetric analysis, attenuated total reflectance Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and solid-state nuclear magnetic resonance.

View Article and Find Full Text PDF

Silica nanoparticles (SiO NPs) synthesized by the sol-gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO NP surface. The hybrid SiO NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.

View Article and Find Full Text PDF

Background: Medically unexplained symptoms are an important mental health problem in primary care and generate a high cost in health services.Cognitive behavioral therapy and psychodynamic therapy have proven effective in these patients. However, there are few studies on the effectiveness of psychosocial interventions by primary health care.

View Article and Find Full Text PDF

Quantum chemical calculations were performed to characterize the interaction of the flavonol molecule (FL) with methacrylic acid (MAA) and 4-vinylpyridine (4VPy) in the formation of imprinted polymers. The polarizable continuum model (PCM) was used to gain insight on the type of interaction between the reactant molecules under vacuum conditions and in the presence of different solvents. The effect of solvent on the pre-polymerization complex formation was evaluated through the stability energy, in which chloroform behaves as the best solvent for the synthesis of the imprinted polymers since it facilitates the reaction by lowering its degree of stabilization.

View Article and Find Full Text PDF

Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed.

View Article and Find Full Text PDF

Vital stains were used in combination with fluorimetry for the elaboration of a new method to quantify Streptomyces programmed cell death, one of the key events in Streptomyces differentiation. The experimental approach described opens the possibility of designing online protocols for automatic monitoring of industrial fermentations.

View Article and Find Full Text PDF

Although online psychological services and research based on them are increasing rapidly, it is not that easy to find investigations that focus on the kind of people that demand them. To know their profile could help to improve the online psychological services that are offered to them. For this purpose, we analysed the sociodemographic characteristics of 1052 participants, all of them having posed a psychological question to our online advice service.

View Article and Find Full Text PDF

Organically modified molecularly imprinted silicas (MIS) for nafcillin recognition were prepared using a simple sol-gel procedure. Molecular recognition of the template was observed by tuning the chemical and structural properties of the MIS. The relative amounts of organically modified alkoxysilane precursors were found to be key in the textural and morphological characteristics of the MIS as well as for developing an imprinting effect in the materials.

View Article and Find Full Text PDF

A study has been made of the analytical application of a nafcillin-imprinted sol-gel to the direct determination of the beta-lactamic antibiotic in spiked milk-based samples using a room temperature phosphorescent flow-through system. The influence of the sample matrix on the transduction and the recognition processes was statistically determined, and results demonstrated that the imprinted sol-gel optosensing system could be effectively applied to real sample analysis. The analytical performance characteristics were as follows: The detection limit results for aqueous and skimmed milk were 5.

View Article and Find Full Text PDF

Degradation of beta-lactam antibiotics by means of metallic cations seems to have a very complex chemistry, involving not only the catalytic effect of the metal ion but also complex formation. Many different compounds, such as methylpyrazines, oxazolones, penicilloic, penicillenic, and penicillonic acids, have been reported as degradation products of such antibiotics, although not many details about the progress of the reaction can be found in the literature. Two novel fluorimetric and spectrophotometric methods previously published by the authors, as well as kinetic studies, have been used to propose a possible reaction mechanism for the ampicillin degradation in the presence of copper(II) ions.

View Article and Find Full Text PDF

New materials based on molecularly imprinted polymers (MIPs) have been developed for use as sorbents in solid phase extraction to preconcentrate some urea herbicides. In the preconcentration step, different molecularly imprinted polymers were tested using methacrylic acid (MAA) and 2-(trifluoromethyl)acrylic acid (TFMAA) as functional monomers, and linuron and isoproturon as templates. The best results were obtained when the polymer was synthesised using MAA with isoproturon as template.

View Article and Find Full Text PDF