Bio-based fertilizers (BBFs) recovered from animal manure are promising products to optimise resources recovery and generate high agricultural yields. However, their fertilization value may be limited and it is necessary to enrich BBFs with microbial consortia to enhance their fertilization value. Three specific microbial consortia were developed according to the characteristics of three different BBFs produced from manure (bio-dried solid fraction, solid fraction of digestate and biochar) to enhance plant growth and product quality.
View Article and Find Full Text PDFThin-layer (TL) photobioreactors (PBRs) are characterised by high productivity. However, their use is limited to lab/pilot-scale, and a deeper level of characterisation is needed to reach industrial scale and test the resistance of multiple microalgae. Here, the performance and composition of eight microalgal communities cultivated in the two main TLs design (thin-layer cascade (TLC) and thin-layer raceway pond (RW)) were investigated through Illumina sequencing.
View Article and Find Full Text PDFMicroalgae cultivation is proposed as an effective system for pathogens reduction and wastewater depuration, however, a full characterisation of the risks is still needed. Two raceways were inoculated with Scenedesmus, one using wastewater and the other using a fertilizer medium. Microbial community and pathogen presence were explored by next generation sequencing (NGS), commercial qPCR array and plate counts.
View Article and Find Full Text PDFThis paper demonstrated the growth ability of twelve algae-microbial consortia (AC) isolated from organic wastes when a pig slurry-derived wastewater (NFP) was used as growth substrate in autotrophic cultivation. Nutrient recovery, biochemical composition, fatty acid and amino acid profiles of algae consortia were evaluated and compared. Three algae-microbial consortia, i.
View Article and Find Full Text PDFPure microalgae cultivation in organic wastes may be hampered by their low adaptation to extreme growth conditions and by the risk of microbial contamination. This work aimed to isolate self-adapted microalgae-microbial consortia able to survive in organic wastes characterized by extreme conditions, to be then proposed for technological application in removing carbon and nutrients from wastes' streams. To do so, sixteen organic wastes with different origins and consistency were sampled.
View Article and Find Full Text PDFThe investigation of the adaptive strategies of wild plant species to extreme environments is a challenging issue, which favors the identification of new traits for plant resilience. We investigated different traits which characterize the root-soil interaction of Parietaria judaica, a wild plant species commonly known as "Pellitory-of-the-wall". P.
View Article and Find Full Text PDFIt has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H -ATPase (V-ATPase) and H -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits.
View Article and Find Full Text PDFAim: The BRAF mutation is a rare pathogenetic alternative to KIT/PDGFRA mutation in GIST and causes Imatinib resistance. A recent description of KIT and BRAF mutations co-occurring in an untreated GIST has challenged the concept of their being mutually exclusive and may account for ab initio resistance to Imatinib, even in the presence of Imatinib-sensitive KIT mutations. BRAF sequencing is generally limited to KIT/PDGFRA wild-type cases.
View Article and Find Full Text PDFIron uptake in dicots depends on their ability to induce a set of responses in root cells including rhizosphere acidification through H(+) extrusion and apoplastic Fe(III) reduction by Fe(III)-chelate reductase. These responses must be sustained by metabolic rearrangements aimed at providing the required NAD(P)H, ATP and H(+). Previous results in Fe-deficient cucumber roots showed that high H(+) extrusion is accompanied by increased phosphoenolpyruvate carboxylase (PEPC) activity, involved in the cytosol pH-stat; moreover (31)P-NMR analysis revealed increased vacuolar pH and decreased vacuolar [inorganic phosphate (Pi)].
View Article and Find Full Text PDFPlant Physiol Biochem
August 2012
The regulation exerted by the Fe status in the plant on Fe deficiency responses was investigated in Cucumis sativus L. roots at both biochemical and molecular levels. Besides the two activities strictly correlated with Fe deficiency response, those of the Fe(III)-chelate reductase and the high affinity Fe transporter, we considered also H(+)-ATPase (EC 3.
View Article and Find Full Text PDFThe demand for iron in leguminous plants increases during symbiosis, as the metal is utilised for the synthesis of various Fe-containing proteins in both plant and bacteroids. However, the acquisition of this micronutrient is problematic due to its low bioavailability at physiological pH under aerobic conditions. Induction of root Fe(III)-reductase activity is necessary for Fe uptake and can be coupled to the rhizosphere acidification capacity linked to the H(+)-ATPase activity.
View Article and Find Full Text PDFWe analysed Pyrus communis cv. Conference and Cydonia oblonga BA29, differently tolerant to lime-induced chlorosis, to identify the key mechanisms involved in their different performance under Fe deficiency induced by the absence of Fe (-Fe) or by the presence of bicarbonate (+FeBic). Under our experimental conditions, a decrease in root elongation was observed in BA29 under bicarbonate supply.
View Article and Find Full Text PDFBackground: The presence of MLL rearrangements in acute leukemia results in a complex number of biological modifications that still remain largely unexplained. Armstrong et al. proposed MLL rearrangement positive ALL as a distinct subgroup, separated from acute lymphoblastic (ALL) and myeloblastic leukemia (AML), with a specific gene expression profile.
View Article and Find Full Text PDFPediatric acute lymphoblastic leukemia (ALL) comprises genetically distinct subtypes. However, 25% of cases still lack defined genetic hallmarks. To identify genomic aberrancies in childhood ALL patients nonclassifiable by conventional methods, we performed a single nucleotide polymorphisms (SNP) array-based genomic analysis of leukemic cells from 29 cases.
View Article and Find Full Text PDFBr J Haematol
September 2008
Gene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing.
View Article and Find Full Text PDFExpression of c-MET, the HGF (hepatocyte growth factor) tyrosine kinase receptor, was investigated in pediatric B-acute lymphoblastic leukemia (ALL) patients. c-MET was found to be expressed in normal B cells and in B-ALL patients with the t(12;21) TEL-AML1 translocation, but it is not expressed in the most part of B-ALL without the t(12;21). We also found that c-MET, related to proliferation and protection from apoptosis, is associated with the pro-apoptotic protein FAS in TEL-AML1 B-ALL cells and in normal B lymphocytes.
View Article and Find Full Text PDFBlood Cells Mol Dis
September 2007
Acute leukemia, defined as a genetic disease, is the most common cancer in children representing about one half of all cancers among persons younger than 15 years. Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) each represents a heterogeneous complex of disorders, with genetic abnormalities presenting in more than 80% of ALLs and more than 90% of AMLs. The diagnostic gold standard and classification of leukaemia involves various methods including morphology, cytochemistry, cytogenetics and molecular genetics, immunophenotyping, and molecular biology.
View Article and Find Full Text PDFIron deficiency responses were investigated in roots of soybean, a Strategy I plant species. Soybean responds to iron deficiency by decreasing growth, both at the root and shoot level. Chlorotic symptoms in younger leaves were evident after a few days of iron deficiency, with chlorophyll content being dramatically decreased.
View Article and Find Full Text PDF