Microbial cells respond to sub-lethal stresses with several physiological changes to increase their chance of survival. These changes are of high relevance when combined treatments (hurdle technology) are applied during food production, as the cells surviving the first hurdle may have greater resistance to subsequent treatments than untreated cells. In this study, we analyzed if develops increased resistance to thermal treatments after the application of an acid shock.
View Article and Find Full Text PDFHeterogeneity in the response of microbial cells to environmental conditions is inherent to every biological system and can be very relevant for food safety, potentially being as important as intrinsic and extrinsic factors. However, previous studies analyzing variability in the microbial response to thermal treatments were limited to data obtained under isothermal conditions, whereas in the reality, environmental conditions are dynamic. In this article we analyse both empirically and through mathematical modelling the variability in the microbial response to thermal treatments under isothermal and dynamic conditions.
View Article and Find Full Text PDFMathematical models developed in predictive microbiology are nowadays an essential tool for food scientists and researchers. However, advanced knowledge of scientific programming and mathematical modelling are often required in order to use them, especially in cases of modelling of dynamic and/or non-linear processes. This may be an obstacle for food scientists without such skills.
View Article and Find Full Text PDF