Cell cycle control must be modified at meiosis to allow two divisions to follow a single round of DNA replication, resulting in ploidy reduction. The mechanisms that ensure meiosis termination at the end of the second and not at the end of first division are poorly understood. We show here that Arabidopsis thaliana TDM1, which has been previously shown to be essential for meiotic termination, interacts directly with the Anaphase-Promoting Complex.
View Article and Find Full Text PDFTwo hallmark features of meiosis are i) the formation of crossovers (COs) between homologs and ii) the production of genetically-unique haploid spores that will fuse to restore the somatic ploidy level upon fertilization. In this study we analysed meiosis in haploid Arabidopsis thaliana plants and a range of haploid mutants to understand how meiosis progresses without a homolog. Extremely low chiasma frequency and very limited synapsis occurred in wild-type haploids.
View Article and Find Full Text PDFRetrotransposons' high capacity for mutagenesis is a threat that genomes need to control tightly. Transcriptional gene silencing is a general and highly effective control of retrotransposon expression. Yet, some retrotransposons manage to transpose and proliferate in plant genomes, suggesting that, as shown for plant viruses, retrotransposons can escape silencing.
View Article and Find Full Text PDFBackground And Aims: Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement.
Methods: The chromosomal localization of (ACG)(n) and (GAA)(n) microsatellite sequences in Ae.
Precise chromosome segregation is vital for polyploid speciation. Here, we highlight recent findings that revitalize the old question of the genetic control of diploid-like meiosis behaviour in polyploid species. We first review new information on the genetic control of autopolyploid and allopolyploid cytological diploidization, notably in wheat and Brassica.
View Article and Find Full Text PDFHomoeologous metaphase I (MI) pairing of Triticum aestivum x Aegilops geniculata hybrids (2n = 5x = 35, ABDU(g)M(g)) has been examined by an in situ hybridization procedure permitting simultaneous discrimination of A, B, D and wild genomes. The seven D genome chromosomes (and their arms, except for 6D and 7D) plus some additional wheat chromosomes were also identified. Wheat-wild MI associations represented more than 60% of total, with an average ratio of 5:1:12 for those involving the A, B and D genomes, respectively.
View Article and Find Full Text PDFThe pattern of homoeologous metaphase I (MI) pairing has been fully characterized in durum wheat x Aegilops cylindrica hybrids (2n = 4x = 28, ABC(c)D(c)) by an in situ hybridization procedure that has permitted individual discrimination of every wheat and wild constituent genome. One of the three hybrid genotypes examined carried the ph1c mutation. In all cases, MI associations between chromosomes of both species represented around two-third of total.
View Article and Find Full Text PDFAn automated liquid-liquid extraction workstation has been developed. This module processes up to 96 samples in an automated and parallel mode avoiding the time-consuming and intensive sample manipulation during the workup process. To validate the workstation, a highly automated and chromatography-free synthesis of differentially substituted quinazolin-4(3H)-ones with two diversity points has been carried out using isatoic anhydride as starting material.
View Article and Find Full Text PDFWhen a crop hybridizes with a wild relative, the potential for stable transmission to the wild of any crop gene is directly related to the frequency of crop-wild homoeologous pairing for the chromosomal region where it is located within the crop genome. Pairing pattern at metaphase I (MI) has been examined in durum wheat x Aegilops geniculata interspecific hybrids (2n=4x=ABUgMg) by means of a genomic in-situ hybridization procedure that resulted in simultaneous discrimination of A, B and wild genomes. The level of MI pairing in the hybrids varied greatly depending on the crop genotype.
View Article and Find Full Text PDFThe temporal and functional relationships between DNA events of meiotic recombination and synaptonemal complex formation are a matter of discussion within the meiotic field. To analyse this subject in grasshoppers, organisms that have been considered as models for meiotic studies for many years, we have studied the localization of phosphorylated histone H2AX (gamma-H2AX), which marks the sites of double-strand breaks (DSBs), in combination with localization of cohesin SMC3 and recombinase Rad51. We show that the loss of gamma-H2AX staining is spatially and temporally linked to synapsis, and that in grasshoppers the initiation of recombination, produced as a consequence of DSB formation, precedes synapsis.
View Article and Find Full Text PDF