Perceptual learning (PL) has shown promise in enhancing residual visual functions in patients with age-related macular degeneration (MD), however it requires prolonged training and evidence of generalization to untrained visual functions is limited. Recent studies suggest that combining transcranial random noise stimulation (tRNS) with perceptual learning produces faster and larger visual improvements in participants with normal vision. Thus, this approach might hold the key to improve PL effects in MD.
View Article and Find Full Text PDFAn observer willing to cross a street must first estimate if the approaching cars offer enough time to safely complete the task. The brain areas supporting this perception, known as Time-To-Contact (TTC) perception, have been mainly studied through noninvasive correlational approaches. We carried out an experiment in which patients were tested during an awake brain surgery electrostimulation mapping to examine the causal implication of various brain areas in the street-crossing decision process.
View Article and Find Full Text PDFProper placental vascularization is vital for pregnancy outcomes, but assessing it with animal models and human explants has limitations. We introduce a 3D in vitro model of human placenta terminal villi including fetal mesenchyme and vascular endothelium. By coculturing HUVEC, placental fibroblasts, and pericytes in a macrofluidic chip with a flow reservoir, we generate fully perfusable fetal microvessels.
View Article and Find Full Text PDFThe mammary gland is a highly vascularized organ influenced by sex hormones including estrogen (E2) and progesterone (P4). Beyond whole-organism studies in rodents or cell monocultures, hormonal effects on the breast microvasculature remain largely understudied. Recent methods to generate 3D microvessels on-chip have enabled direct observation of complex vascular processes; however, these models often use non-tissue-specific cell types, such as human umbilical vein endothelial cells (HUVECs) and fibroblasts from various sources.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by a progressive deterioration of motor and cognitive functions. Although death of dopamine neurons is the hallmark pathology of PD, this is a late-stage disease process preceded by neuronal dysfunction. Here we describe early physiological perturbations in patient-derived induced pluripotent stem cell (iPSC)-dopamine neurons carrying the - mutation, a strong genetic risk factor for PD.
View Article and Find Full Text PDFMethods Mol Biol
January 2023
Investigating the complex cellular interactions of the placenta has remained, until now, a challenge in the field. Given the ethical limitations of studying human placentae, and the interspecies differences that exist between mammals, in vitro models are a valuable tool for investigating developmental and pathologic processes related to the human placenta. A number of in vitro models have been recently employed to investigate various aspects of placental development, with many focusing on the maternal-fetal interface including the trophoblasts and an endothelial barrier.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2022
Purpose: Optic flow processing was characterized in patients with macular degeneration (MD).
Methods: Twelve patients with dense bilateral scotomas and 12 age- and gender-matched control participants performed psychophysical experiments. Stimuli were dynamic random-dot kinematograms projected on a large screen.
Fibrosis, a hallmark of many cardiac and pulmonary diseases, is characterized by excess deposition of extracellular matrix proteins and increased tissue stiffness. This serious pathologic condition is thought to stem majorly from local stromal cell activation. Most studies have focused on the role of fibroblasts; however, the endothelium has been implicated in fibrosis through direct and indirect contributions.
View Article and Find Full Text PDFActing as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species.
View Article and Find Full Text PDFAlpha-synuclein pathology is associated with dopaminergic neuronal loss in the substantia nigra (SN) of Parkinson's patients. Working across human and mouse models, we investigated mechanisms by which the accumulation of soluble α-synuclein oligomers leads to neurodegeneration. Biochemical analysis of the midbrain of α-synuclein overexpressing BAC-transgenic male and female mice revealed age- and region-dependent mitochondrial dysfunction and accumulation of damaged proteins downstream of the RE1 Silencing Transcription Factor (REST).
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder and a central role for α-synuclein (αSyn; SNCA) in disease aetiology has been proposed based on genetics and neuropathology. To better understand the pathological mechanisms of αSyn, we generated induced pluripotent stem cells (iPSCs) from healthy individuals and PD patients carrying the A53T SNCA mutation or a triplication of the SNCA locus and differentiated them into dopaminergic neurons (DAns). iPSC-derived DAn from PD patients carrying either mutation showed increased intracellular αSyn accumulation, and DAns from patients carrying the SNCA triplication displayed oligomeric αSyn pathology and elevated αSyn extracellular release.
View Article and Find Full Text PDFPosttranslational modifications can have profound effects on the biological and biophysical properties of proteins associated with misfolding and aggregation. However, their detection and quantification in clinical samples and an understanding of the mechanisms underlying the pathological properties of misfolding- and aggregation-prone proteins remain a challenge for diagnostics and therapeutics development. We have applied an ultrasensitive immunoassay platform to develop and validate a quantitative assay for detecting a posttranslational modification (phosphorylation at residue T3) of a protein associated with polyglutamine repeat expansion, namely Huntingtin, and characterized its presence in a variety of preclinical and clinical samples.
View Article and Find Full Text PDFPreferential degeneration of dopamine neurons (DAn) in the midbrain represents the principal hallmark of Parkinson's disease (PD). It has been hypothesized that major contributors to DAn vulnerability lie in their unique cellular physiology and architecture, which make them particularly susceptible to stress factors. Here, we report a concise overview of some of the cell mechanisms that may exacerbate DAn sensitivity and loss in PD.
View Article and Find Full Text PDFConformational changes in disease-associated or mutant proteins represent a key pathological aspect of Huntington's disease (HD) and other protein misfolding diseases. Using immunoassays and biophysical approaches, we and others have recently reported that polyglutamine expansion in purified or recombinantly expressed huntingtin (HTT) proteins affects their conformational properties in a manner dependent on both polyglutamine repeat length and temperature but independent of HTT protein fragment length. These findings are consistent with the HD mutation affecting structural aspects of the amino-terminal region of the protein, and support the concept that modulating mutant HTT conformation might provide novel therapeutic and diagnostic opportunities.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2017
Huntington's disease (HD) is an autosomal-dominant progressive neurodegenerative disorder that primarily affects medium spiny neurons within the striatum. HD is caused by inheritance of an expanded CAG repeat in the HTT gene, resulting in a mutant huntingtin (mHtt) protein containing extra glutamine residues. Despite the advances in understanding the molecular mechanisms involved in HD the preferential vulnerability of the striatum remains an intriguing question.
View Article and Find Full Text PDFCognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development.
View Article and Find Full Text PDFThe molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still unknown. However, growing evidence suggest that mitochondrial dysfunction could play a major role. In searching for a potential link between striatal neurodegeneration and mitochondrial defects we focused on cyclin-dependent kinase 5 (Cdk5).
View Article and Find Full Text PDFEndonuclease G (EndoG) has been largely related with a role in the modulation of a caspase-independent cell death pathway in many cellular systems. However, whether this protein plays a specific role in the brain remains to be elucidated. Here we have characterized the behavioral phenotype of EndoG(-/-) null mice and the expression of the nuclease among brain regions.
View Article and Find Full Text PDF