Publications by authors named "Marta Carrara"

Arterial pulse wave analysis (PWA) is now established as a powerful tool to investigate the cardiovascular system, and several clinical studies have shown how PWA can provide valuable prognostic information over and beyond traditional cardiovascular risk factors. Typically these techniques are applied to chronic conditions, such as hypertension or aging, to monitor the slow structural changes of the vascular system which lead to important alterations of the arterial PW. However, their application to acute critical illness is not currently widespread, probably because of the high hemodynamic instability and acute dynamic alterations affecting the cardiovascular system of these patients.

View Article and Find Full Text PDF

Objective: Sepsis induces a severe decompensation of arterial and cardiac functional properties, leading to important modifications of arterial blood pressure (ABP) waveform, not resolved by recommended therapy, as shown by previous works. The aim of this study is to quantify the changes in ABP waveform morphology and wave reflections during a long-term swine experiment of polymicrobial sepsis and resuscitation, to deepen the understanding of the cardiovascular response to standard resuscitation therapy.

Methods: We analyzed 14 pigs: polymicrobial sepsis was induced in 9 pigs followed by standard resuscitation and 5 pigs were treated as sham controls.

View Article and Find Full Text PDF

. Pulse wave analysis (PWA) can provide insights into cardiovascular biomechanical properties. The use of PWA in critically ill patients, such as septic shock patients, is still limited, but it can provide complementary information on the cardiovascular effects of treatment when compared to standard indices outlined in international guidelines.

View Article and Find Full Text PDF
Article Synopsis
  • Sepsis can cause big problems in the body, like making the heart beat really fast and the blood vessels stiff, even if doctors give treatment to stabilize blood pressure.!
  • In a study with pigs, researchers looked at how sepsis affects blood circulation and the nervous system that controls the heart, comparing sick pigs to healthy ones.!
  • They found that the problems caused by sepsis in the pigs continued even after they received treatment, which shows that sepsis can have long-lasting effects on the body.!
View Article and Find Full Text PDF

Elevated circulating cardiac troponin T (cTnT) is frequent in septic shock patients. Signs of myocardial ischemia and myocyte necrosis are not universally present, but the precise mechanism for elevated cTnT is unknown. We investigated plasma and heart tissue metabolites concentration in six septic shock (SS) and three sham swine undergoing a protocol of polymicrobial septic shock and resuscitation, in order to highlight possible pathways and biomarkers involved in troponin release (high sensitive cardiac troponin T, hs-cTnT).

View Article and Find Full Text PDF

The autonomic nervous system (ANS) regulates the cardiovascular system. A growing body of experimental and clinical evidence confirms significant dysfunction of this regulation during sepsis and septic shock. Clinical guidelines do not currently include any evaluation of ANS function during the resuscitation phase of septic shock despite the fact that the severity and persistence of ANS dysfunction are correlated with worse clinical outcomes.

View Article and Find Full Text PDF

Persisting tachycardia is often observed in resuscitated septic shock patients, and it is an independent risk factor for increased mortality. Recently, several drugs, such as esmolol and ivabradine, have been proved to be beneficial in HR control, but their overall impact on cardiac functions needs further investigation. The aim of this study is to study the effects of the two drugs on heart function in a protocol of polymicrobial septic shock and resuscitation.

View Article and Find Full Text PDF

An elevated heart rate (HR) often persists in resuscitated septic shock patients, increasing the risk of mortality. Several drugs for HR control, such as esmolol and ivabradine, have been tested in the recent years, but their benefit on the overall cardiovascular system is still under investigation. The aim of this study is to investigate the hemodynamic effects of the two drugs in a protocol of polymicrobial septic shock and resuscitation, mainly focusing on the vascular function.

View Article and Find Full Text PDF

Background: Acute inflammation and sepsis are known to induce changes in vascular properties, leading to increased arterial stiffness; at the same time, the autonomic nervous system (ANS) also affects vascular properties by modulating the arterial smooth muscle tone, and it is widely reported that sepsis and septic shock severely impair ANS activity. Currently, clinical guidelines are mainly concerned to resuscitate septic shock patients from hypotension, hypovolemia, and hypoperfusion; however, if the current resuscitation maneuvers have a beneficial effect also on vascular properties and autonomic functionality is still unclear. The objective of this work is to assess the effects of standard resuscitation at vascular level and to verify if there is any association between alterations in vascular properties and ANS activity.

View Article and Find Full Text PDF

Objective: Septic shock (SS) patients often show elevated heart rate (HR) despite resuscitation, and this condition is considered an early manifestation of myocardial dysfunction due to an impairment of autonomic nervous system (ANS). We aimed at proposing a mathematical model to assess the autonomic control of ventricular contractility (VC) and HR to track changes in heart functionality during an experimental animal model of SS and resuscitation.

Methods: SS was induced in six adult swine by polymicrobial peritonitis.

View Article and Find Full Text PDF

Protein phosphorylation is a prevalent and ubiquitous mechanism of regulation. Kinases are popular drug targets, but identifying selective phosphatase inhibitors has been challenging. Here, we used surface plasmon resonance to design a method to enable target-based discovery of selective serine/threonine phosphatase inhibitors.

View Article and Find Full Text PDF

Autonomic control of blood pressure (BP) and heart rate (HR) is crucial during bleeding and hemorrhagic shock (HS) to compensate for hypotension and hypoxia. Previous works have observed that at the point of hemodynamic decompensation a marked suppression of BP and HR variability occurs, leading to irreversible shock. We hypothesized that recovery of the autonomic control may be decisive for effective resuscitation, along with restoration of mean BP.

View Article and Find Full Text PDF

Background: Mean values of hemodynamic variables are poorly effective in evaluating an actual recovery of the short-term autonomic mechanisms for blood pressure (BP) and heart rate (HR) regulation. The aim of this work is to analyze the response to therapy in the early phase of septic shock to verify possible associations between BP recovery and BP autonomic control.

Methods: This is an ancillary study from the multicenter prospective observational trial Shockomics (NCT02141607).

View Article and Find Full Text PDF

The reversible phosphorylation of proteins controls most cellular functions. Protein kinases have been popular drug targets, unlike phosphatases, which remain a drug discovery challenge. Guanabenz and Sephin1 are selective inhibitors of the phosphatase regulatory subunit PPP1R15A (R15A) that prolong the benefit of eIF2α phosphorylation, thereby protecting cells from proteostatic defects.

View Article and Find Full Text PDF

We studied the problem of mortality prediction in two datasets, the first composed of 23 septic shock patients and the second composed of 73 septic subjects selected from the public database MIMIC-II. For each patient we derived hemodynamic variables, laboratory results, and clinical information of the first 48 hours after shock onset and we performed univariate and multivariate analyses to predict mortality in the following 7 days. The results show interesting features that individually identify significant differences between survivors and nonsurvivors and features which gain importance only when considered together with the others in a multivariate regression model.

View Article and Find Full Text PDF

Background: Identification of atrial fibrillation (AF) is a clinical imperative. Heartbeat interval time series are increasingly available from personal monitors, allowing new opportunity for AF diagnosis.

Goal: Previously, we devised numerical algorithms for identification of normal sinus rhythm (NSR), AF, and SR with frequent ectopy using dynamical measures of heart rate.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is usually detected by inspection of the electrocardiogram waveform, a task made difficult when the signal is distorted by noise. The RR interval time series is more frequently available and accurate, yet linear and nonlinear time series analyses that detect highly varying and irregular AF are vulnerable to the common finding of frequent ectopy. We hypothesized that different nonlinear measures might capture characteristic features of AF, normal sinus rhythm (NSR), and sinus rhythm (SR) with frequent ectopy in ways that linear measures might not.

View Article and Find Full Text PDF

Stress caused by accumulation of misfolded proteins within the endoplasmic reticulum (ER) elicits a cellular unfolded protein response (UPR) aimed at maintaining protein-folding capacity. PERK, a key upstream component, recognizes ER stress via its luminal sensor/transducer domain, but the molecular events that lead to UPR activation remain unclear. Here, we describe the crystal structures of mammalian PERK luminal domains captured in dimeric state as well as in a novel tetrameric state.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is an essential cell signaling system that detects the accumulation of misfolded proteins within the endoplasmic reticulum (ER) and initiates a cellular response in order to maintain homeostasis. How cells detect the accumulation of misfolded proteins remains unclear. In this study, we identify a noncanonical interaction between the ATPase domain of the ER chaperone BiP and the luminal domains of the UPR sensors Ire1 and Perk that dissociates when authentic ER unfolded protein CH1 binds to the canonical substrate binding domain of BiP.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa chronically infects the airways of Cystic Fibrosis (CF) patients during which it adapts and undergoes clonal expansion within the lung. It commonly acquires inactivating mutations of the anti-sigma factor MucA leading to a mucoid phenotype, caused by excessive production of the extracellular polysaccharide alginate that is associated with a decline in lung function. Alginate production is believed to be the key benefit of mucA mutations to the bacterium in the CF lung.

View Article and Find Full Text PDF

Ire1 is activated in response to accumulation of misfolded proteins within the endoplasmic reticulum as part of the unfolded protein response (UPR). It is a unique enzyme, possessing both kinase and RNase activity that is required for specific splicing of Xbp1 mRNA leading to UPR activation. How phosphorylation impacts on the Ire1 splicing activity is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The unfolded protein response (UPR) is a mechanism that helps cells manage stress caused by the accumulation of improperly folded proteins in the endoplasmic reticulum (ER).
  • It involves three key proteins—IRE1, PERK, and ATF6—that detect folded protein levels and trigger signals for the cell to regain balance.
  • The review explores different proposed methods of how these sensor proteins identify unfolded proteins to kickstart UPR signaling pathways.
View Article and Find Full Text PDF