Publications by authors named "Marta Calbet"

Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by abscesses, nodules, dissecting/draining tunnels, and extensive fibrosis. Here, we integrate single-cell RNA sequencing, spatial transcriptomics, and immunostaining to provide an unprecedented view of the pathogenesis of chronic HS, characterizing the main cellular players and defining their interactions. We found a striking layering of the chronic HS infiltrate and identified the contribution of 2 fibroblast subtypes (SFRP4+ and CXCL13+) in orchestrating this compartmentalized immune response.

View Article and Find Full Text PDF

Non-T2 severe asthma and chronic obstructive pulmonary disease (COPD) are airway chronic inflammatory disorders with a poor response to corticosteroids. LAS194046, a novel pan-Janus kinase (JAK) inhibitor, shows inhibitory effects on T2 allergic lung inflammation in rats. In this work we analyze the effects of LAS194046, fluticasone propionate and their combination in neutrophils from non-T2 severe asthma and COPD patients in vitro.

View Article and Find Full Text PDF

Janus kinases (JAKs) have a key role in regulating the expression and function of relevant inflammatory cytokines involved in asthma and chronic obstructive pulmonary disease. Herein are described the design, synthesis, and pharmacological evaluation of a series of novel purinone JAK inhibitors with profiles suitable for inhaled administration. Replacement of the imidazopyridine hinge binding motif present in the initial compounds of this series with a pyridone ring resulted in the mitigation of cell cytotoxicity.

View Article and Find Full Text PDF

The Janus-activated kinase (JAK) family together with signal transducer and activator of transcription (STAT) signaling pathway has a key role in regulating the expression and function of many inflammatory cytokines. This has led to the discovery of JAK inhibitors for the treatment of inflammatory diseases, some of them already in the market. Considering the adverse effects associated with JAK inhibition by oral route, we wanted to explore whether JAK inhibition by inhaled route is enough to inhibit airway inflammation.

View Article and Find Full Text PDF

Recent evidence indicates that AZD8999 (LAS190792), a novel muscarinic acetylcholine receptor antagonist and β2-adrenoceptor agonist (MABA) in development for chronic respiratory diseases, induces potent and sustained relaxant effects in human bronchi by adressing both muscarinic acetylcholine receptors and β2-adrenoceptor. However, the anti-inflammatory effects of the AZD8999 monotherapy or in combination with corticosteroids are unknown. This study investigates the anti-inflammatory effects of AZD8999 in monotherapy and combined with fluticasone propionate in neutrophils from healthy and chronic obstructive pulmonary disease (COPD) patients.

View Article and Find Full Text PDF

Oral PI3Kδ inhibitors such as Idelalisib and Duvelisib have shown efficacy as anticancer agents and Idelalisib has been approved for the treatment of three B-cell cancers. However, Idelalisib has a black box warning on its product label regarding the risks of fatal and serious toxicities including hepatic toxicity, severe diarrhea, colitis, pneumonitis, infections, and intestinal perforation. Some of these side effects are mechanism-related and could hinder the development of Idelalisib for less severe conditions.

View Article and Find Full Text PDF

Background: Inhaled allergen challenges are often used to evaluate novel asthma treatments in early phase clinical trials. Current novel therapeutic targets in asthma include phosphoinositide 3-kinases (PI3K) delta and gamma, p38 mitogen-activated protein kinase (p38) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signalling pathways. The activation of these pathways following allergen exposure in atopic asthma patients it is not known.

View Article and Find Full Text PDF

The chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTh2) is a G protein-coupled receptor expressed on the leukocytes most closely associated with asthma and allergy like eosinophils, mast cells, Th2-lymphocytes and basophils. At present it is clear that CRTh2 mediates most prostaglandin D2 (PGD2) pro-inflammatory effects and as a result antagonists for this receptor have reached asthma clinical studies showing a trend of lung function improvement. The challenge remains to identify compounds with improved clinical efficacy when administered once a day.

View Article and Find Full Text PDF

Monocyclic and bicyclic ring systems were investigated as the "core" section of a series of diphenylsulphone-containing acetic acid CRTh2 receptor antagonists. A range of potencies were observed and single-digit nanomolar potencies were obtained in both the monocyclic and bicyclic cores. Residence times for the monocyclic compounds were very short.

View Article and Find Full Text PDF

The correct positioning and orientation of an hydrogen bond acceptor (HBA) in the tail portion of the biaryl series of CRTh2 antagonists is a requirement for long receptor residence time. The HBA in combination with a small steric substituent in the core section (R(core) ≠ H) gives access to compounds with dissociation half-lives of ⩾ 24h.

View Article and Find Full Text PDF

Extensive structure-activity relationship (SAR) and structure-kinetic relationship (SKR) studies in the bicyclic heteroaromatic series of CRTh2 antagonists led to the identification of several molecules that possessed both excellent binding and cellular potencies along with long receptor residence times. A small substituent in the bicyclic core provided an order of magnitude jump in dissociation half-lives. Selected optimized compounds demonstrated suitable pharmacokinetic profiles.

View Article and Find Full Text PDF

A knowledge-based design strategy led to the discovery of several new series of potent and orally bioavailable CRTh2 antagonists where a bicyclic heteroaromatic ring serves as the central core. Structure-kinetic relationships (SKR) opened up the possibility of long receptor residence times.

View Article and Find Full Text PDF

Pyrrolopiperidinone acetic acids (PPAs) were identified as highly potent CRTh2 receptor antagonists. In addition, many of these compounds displayed slow-dissociation kinetics from the receptor. Structure-kinetic relationship (SKR) studies allowed optimisation of the kinetics to give potent analogues with long receptor residence half-lives of up to 23 h.

View Article and Find Full Text PDF

In this manuscript, the synthesis and biological activity of a series of pyrazole acetic acid derivatives as CRTh2 antagonists is presented. Biological evaluation in vitro revealed that the pyrazole core showed in several cases a different structure-activity relationship (SAR) to that of related indole acetic acid. A potent series of ortho-sulfonyl benzyl substituents was found, from which compounds 27 and 63 were advanced to in vivo profiling.

View Article and Find Full Text PDF

High throughput screening identified the pyrazole-4-acetic acid substructure as CRTh2 receptor antagonists. Optimisation of the compounds uncovered a tight SAR but also identified some low nanomolar inhibitors.

View Article and Find Full Text PDF

Agonists of the sphingosine-1-phosphate (S1P) receptors, like fingolimod (FTY720), are a novel class of immunomodulators. Administration of these compounds prevents the egress of lymphocytes from primary and secondary lymphoid organs causing peripheral blood lymphopenia. Although it is well established that lymphopenia is mediated by S1P receptor type 1 (S1P1), the exact mechanism is still controversial.

View Article and Find Full Text PDF

A novel series of N-heteroaryl 4'-(2-furyl)-4,5'-bipyrimidin-2'-amines has been identified as potent and selective A(2B) adenosine receptor antagonists. In particular, compound 5 showed high affinity for the A(2B) receptor (Ki = 17 nM), good selectivity (IC(50): A(1) > 1000 nM, A(2A) > 2500 nM, A3 > 1000 nM), displayed a favorable pharmacokinetic profile in preclinical species, and showed efficacy in functional in vitro models.

View Article and Find Full Text PDF

Cortistatin-14 (CST) is a neuropeptide expressed in cortical and hippocampal interneurons that shares 11 of 14 residues with somatostatin. In contrast to somatostatin, infusion of CST decreases locomotor activity and selectively enhances slow wave sleep. Here, we show that transgenic mice that overexpress cortistatin under the control of neuron-specific enolase promoter do not express long-term potentiation in the dentate gyrus.

View Article and Find Full Text PDF

Nucleoside transport processes regulate the levels of adenosine available to modulate neurotransmission, vascular tone and other physiological events. However, although equilibrative transporter transcripts or proteins have been mapped in the central nervous system of rats and humans, little is known about the presence and distribution of the complete family of nucleoside transporters in brain. In this study, we analysed the distribution of the transcript encoding the high affinity adenosine-preferring concentrative transporter CNT2 in the rat central nervous system and compared it with that of the equilibrative transporter ENT1.

View Article and Find Full Text PDF

In an attempt to elucidate the molecular basis of neuronal migration and corticogenesis, we performed subtractive hybridization of mRNAs from the upper cortical layers (layer I and upper cortical plate) against mRNAs from the remaining cerebral cortex at E15-E16. We obtained a collection of subtracted cDNA clones and analyzed their 3' UTR sequences, 47% of which correspond to EST sequences, and may represent novel products. Among the cloned sequences, we identified gene products that have not been reported in brain or in the cerebral cortex before.

View Article and Find Full Text PDF