Amidst the COVID-19 pandemic, the Polytechnic University of Setúbal (IPS) used its expertise in molecular genetics to establish a COVID-19 laboratory, addressing the demand for community-wide testing. Following standard protocols, the IPS COVID Lab received national accreditation in October 2020 and was registered in February 2021. With the emergence of new SARS-CoV-2 variants and safety concerns for students and staff, the lab was further challenged to develop rapid and sensitive diagnostic technologies.
View Article and Find Full Text PDFA computational biochemistry laboratory, fitted for bioinformatics students, is presented. The molecular dynamics package GROMACS is used to prepare and simulate a solvated protein. Students analyze the trajectory with different available tools (GROMACS and VMD) to probe the structural stability of the protein during the simulation.
View Article and Find Full Text PDFHelicobacter pylori is a pathogen that infects the gastric mucosa of a large percentage of the human population worldwide, and predisposes to peptic ulceration and gastric cancer. Persistent colonization of humans by H. pylori triggers an inflammatory response that leads to the production of reactive nitrogen species.
View Article and Find Full Text PDFHelicobacter pylori is a pathogen that establishes long life infections responsible for chronic gastric ulcer diseases and a proved risk factor for gastric carcinoma. The therapeutic properties of carbon-monoxide releasing molecules (CORMs) led us to investigate their effect on H. pylori.
View Article and Find Full Text PDFMammalian cells of innate immunity respond to pathogen invasion by activating proteins that generate a burst of oxidative and nitrosative stress. Pathogens defend themselves from the toxic compounds by triggering a variety of detoxifying enzymes. Escherichia coli flavorubredoxin is a nitric oxide reductase that is expressed under nitrosative stress conditions.
View Article and Find Full Text PDFAntioxid Redox Signal
November 2012
Aims: The ability of pathogens to cope with the damaging effects of nitric oxide (NO), present in certain host niches and produced by phagocytes that support innate immunity, relies on multiple strategies that include the action of detoxifying enzymes. As for many other pathogens, these systems remained unknown for Helicobacter pylori. This work aimed at identifying and functionally characterizing an H.
View Article and Find Full Text PDFWe show that genomic hybridization allows detection of a spontaneous secondary deletion of 126 genes that occurred during construction of an Escherichia coli ytfE mutant, LMS4209, explaining some of its unexpected growth defects. We confirm that YtfE is required to repair damage to iron-sulfur centres and for hydrogen peroxide resistance.
View Article and Find Full Text PDFA key element in eukaryotic immune defenses against invading microbes is the production of reactive oxygen and nitrogen species. One of the main targets of these species are the iron-sulfur clusters, which are essential prosthetic groups that confer to proteins the ability to perform crucial roles in biological processes. Microbes have developed sophisticated systems to eliminate nitrosative and oxidative species and promote the repair of the damages inflicted.
View Article and Find Full Text PDFThe flavodiiron proteins (FDPs), present in Archaea, Bacteria, and some protozoan pathogens (mostly anaerobes or microaerophiles), have been proposed to afford protection to microbes against nitric oxide and/or oxygen (toxic for anaerobes). The structural prototype of this protein family is a homodimer assembled in a "head-to-tail" configuration, with each monomer being composed of two domains: an N-terminal metallo-beta-lactamase module harboring a nonheme diiron center (active site of NO/O(2) reduction) and a C-terminal flavodoxin module, where a flavin mononucleotide moiety is embedded. Several FDPs bear C-terminal extra domains, which influence the composition of the respective electron transfer chains that couple NAD(P)H oxidation to NO/O(2) reduction.
View Article and Find Full Text PDFYtfE was recently shown to be a newly discovered protein required for the recovery of the activity of iron-sulfur-containing enzymes damaged by oxidative and nitrosative stress conditions. The Escherichia coli YtfE purified protein is a dimer with two iron atoms per monomer and the type and properties of the iron center were investigated by using a combination of resonance Raman and extended X-ray absorption fine structure spectroscopies. The results demonstrate that YtfE contains a non-heme dinuclear iron center having mu-oxo and mu-carboxylate bridging ligands and six histidine residues coordinating the iron ions.
View Article and Find Full Text PDFExpression of two genes of unknown function, Staphylococcus aureus scdA and Neisseria gonorrhoeae dnrN, is induced by exposure to oxidative or nitrosative stress. We show that DnrN and ScdA are di-iron proteins that protect their hosts from damage caused by exposure to nitric oxide and to hydrogen peroxide. Loss of FNR-dependent activation of aniA expression and NsrR-dependent repression of norB and dnrN expression on exposure to NO was restored in the gonococcal parent strain but not in a dnrN mutant, suggesting that DnrN is necessary for the repair of NO damage to the gonococcal transcription factors, FNR and NsrR.
View Article and Find Full Text PDFDNA microarray experiments showed that the expression of the Escherichia coli ytfE gene is highly increased upon exposure to nitric oxide. We also reported that deletion of ytfE significantly alters the phenotype of E. coli, generating a strain with enhanced susceptibility to nitrosative stress and defective in the activity of several iron-sulfur-containing proteins.
View Article and Find Full Text PDFOur previous analysis of the transcriptome of Escherichia coli under nitrosative stress showed that the ytfE gene was one of the highest induced genes. Furthermore, the E. coli strain mutated on the ytfE gene was found to be more sensitive to nitric oxide than the wild-type strain.
View Article and Find Full Text PDFNorR is a nitric oxide sensor that in Escherichia coli regulates the gene encoding for flavorubredoxin, an enzyme involved in nitrosative detoxification. The present work shows that although purified NorR can bind independently to each of three binding sites in the flavorubredoxin gene promoter, the presence of all sites is required for in vivo nitric oxide-dependent induction of the flavorubredoxin gene. Furthermore, trimerization of NorR upon binding to the three sites was observed by protein cross-linking experiments.
View Article and Find Full Text PDFNitric oxide produced by activated macrophages plays a key role as one of the immune system's weapons against pathogens. Because the lifetime of nitric oxide is short in aerobic conditions, whereas in anaerobic conditions the cytotoxic effects of nitric oxide are greatly increased as in the infection/inflammation processes, it is important to establish which systems are able to detoxify nitric oxide under anaerobic conditions. In the present work a new set of Escherichia coli K-12 genes conferring anaerobic resistance to nitric oxide is presented, namely the gene product of YtfE and a potential transcriptional regulator of the helix-turn-helix LysR-type (YidZ).
View Article and Find Full Text PDF