Publications by authors named "Marta Barrachina"

Brain-derived neurotrophic factor (BDNF) gene regulation has been linked to the pathophysiology of major depressive disorder (MDD). MDD patients show cognitive deficits, and altered BDNF regulation has a relevant role in neurocognitive functions. Our goal was to explore the association between BDNF genetic and epigenetic variations with neurocognitive performance in a group of MDD patients and healthy controls considering possible modulating factors.

View Article and Find Full Text PDF

Major depressive disorder (MDD) and obsessive-compulsive disorder (OCD) have both been linked to abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis. Polymorphisms in the genes involved in HPA axis activity, such as FKBP5, and their interactions with childhood trauma have been associated with stress-related mental disorders. Our goal was to study the role of FKBP5 genetic variants in HPA axis negative feedback regulation as a possible risk factor for different mental disorders such as MDD and OCD, while controlling for childhood trauma, anxiety and depressive symptoms.

View Article and Find Full Text PDF

Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription.

View Article and Find Full Text PDF

Adenosine A2A receptor (A2AR) is a G protein-coupled receptor enriched in the striatum for which an increased expression has been demonstrated in certain neurological diseases. Interestingly, previous in vitro studies demonstrated that A2AR expression levels are reduced after treatment with S-adenosyl-L-methionine (SAM), a methyl donor molecule involved in the methylation of important biological structures such as DNA, proteins, and lipids. However, the in vivo effects of SAM treatment on A2AR expression are still obscure.

View Article and Find Full Text PDF

Adenosine A2A receptor (A2AR) is a G-protein coupled receptor that stimulates adenylyl cyclase activity. In the brain, A2ARs are found highly enriched in striatal GABAergic medium spiny neurons, related to the control of voluntary movement. Pharmacological modulation of A2ARs is particularly useful in Parkinson's disease (PD) due to their property of antagonizing dopamine D2 receptor activity.

View Article and Find Full Text PDF

Schizophrenia (SZ) is a mental disorder of unknown origin. Some scientific evidence seems to indicate that SZ is not a single disease entity, since there are patient groups with clear symptomatic, course and biomarker differences. SZ is characterized by a hyperdopaminergic state related to high dopamine D2 receptor activity.

View Article and Find Full Text PDF

Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine.

View Article and Find Full Text PDF

Adenosine A2A receptor (A2AR) is a G-protein-coupled receptor highly expressed in basal ganglia. Its expression levels are severely reduced in Huntington's disease (HD), and several pharmacological therapies have shown its implication in this neurodegenerative disorder. The main goal of this study was to gain insight into the molecular mechanisms that regulate A2AR gene (ADORA2A) expression in HD.

View Article and Find Full Text PDF

Histone acetylation plays a role in the regulation of gene transcription. Yet it is not known whether post-mortem brain tissue is suitable for the analysis of histone acetylation. To examine this question, nucleosomes were isolated from frontal cortex of nine subjects which were obtained at short times after death and immediately frozen at -80°C or maintained at room temperature from 3 h up to 50 h after death and then frozen at -80°C to mimic variable post-mortem delay in tissue processing as currently occurs in normal practice.

View Article and Find Full Text PDF

Adenosine A(2A) receptors (A(2A) Rs) are G-protein coupled receptors that stimulate adenylyl cyclase activity. The most A(2A) Rs-enriched brain region is the striatum, in which A(2A) Rs are largely restricted to GABAergic neurons of the indirect pathway. We recently described how DNA methylation controls basal A(2A) R expression levels in human cell lines.

View Article and Find Full Text PDF

Adenosine A(2A) receptors (A(2A)Rs) appear to play important roles in inflammation and in certain diseases of the nervous system. Pharmacological modulation of A(2A)Rs is particularly useful in Parkinson's disease and has been tested in schizophrenia. However, little is known about the regulation of A(2A)R gene (ADORA2A).

View Article and Find Full Text PDF

The closest region of the promoter of MHC II genes and particularly three conserved boxes (X, Y and S) are fundamental for the transcriptional regulation. A second set of conserved sequences is present approximately 1200-1500 bp upstream in opposite orientation. In transient transfection experiments in IFN-gamma-treated macrophages and in B lymphocytes, we determined the expression of a fragment of 2035 bp of the I-Abeta gene, which contains the upstream boxes.

View Article and Find Full Text PDF

DNA methylation occurs predominantly at cytosines that precede guanines in dinucleotide CpG sites; it is one of the most important mechanisms for epigenetic DNA regulation during normal development and for aberrant DNA in cancer. To determine the feasibility of DNA methylation studies in the postmortem human brain, we evaluated brain samples with variable postmortem artificially increased delays up to 48 hours. DNA methylation was analyzed in selected regions of MAPT, APP, and PSEN1 in the frontal cortex and hippocampus of controls (n=26) and those with Alzheimer disease at Stages I to II (n=17); Alzheimer disease at Stages III to IV (n=15); Alzheimer disease at Stages V to VI (n=12); argyrophilic grain disease (n=10); frontotemporal lobar degeneration linked to tau mutations (n=6); frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions (n=4); frontotemporal lobar degeneration with motor neuron disease (n=3); Pick disease (n=3); Parkinson disease (n=8); dementia with Lewy bodies, pure form (n=5); and dementia with Lewy bodies, common form (n=15).

View Article and Find Full Text PDF

Brain banks are facilities providing an interface between generous donation of nervous tissues and research laboratories devoted to increase our understanding of the diseases of the nervous system, discover new diagnostic targets, and develop new strategies. Considering this crucial role, it is important to learn about the suitabilities, limitations and proper handling of individual brain samples for particular studies. Several factors may interfere with preservation of DNA, RNA, proteins and lipids, and, therefore, special care must be taken first to detect sub-optimally preserved tissues and second to provide adequate material for each specific purpose.

View Article and Find Full Text PDF

Adenosine receptors are G-protein coupled receptors which modulate neurotransmitter release, mainly glutamate. Adenosine A(1) and A(2A) receptors were studied in post-mortem human cortex in Alzheimer's disease (AD) and age-matched controls. Total adenosine A(1) receptor number, determined by radioligand binding assay, using [(3)H]DPCPX, was significantly increased in AD cases in early and advanced stages without differences with the progression of the disease.

View Article and Find Full Text PDF

Myotilinopathy is a subgroup of myofibrillar myopathies caused by mutations in the myotilin gene in which there is aggregation of abnormal cytoskeletal proteins and ubiquitin. We report here on the accumulation of neuron-related proteins such as ubiquitin carboxy-terminal hydrolase L1 (UCHL1), synaptosomal-associated protein 25, synaptophysin, and alpha-internexin in aberrant protein aggregates in myotilinopathy. We have determined that the neuron-restrictive silencer factor (NRSF)/RE1 silencing transcription factor (REST), a transcription factor expressed in non-neuronal tissues repressing the expression of several neuronal genes, is reduced in myotilinopathies.

View Article and Find Full Text PDF

The expression of MHC class II genes is strictly tissue specific. In a limited number of cells, the expression of these genes is inducible by cytokines and only in dendritic and B cells is expression constitutive. LPS blocks the cytokine-dependent induction of these genes, but enhances their expression in dendritic and the B cell line A20.

View Article and Find Full Text PDF

Abnormalities in the cerebral microvasculature are common in Alzheimer disease (AD). Expression levels of the water channels aquaporin 1 and aquaporin 4 (AQP1, AQP4) were examined in AD cases by gel electrophoresis and Western blotting, and densitometric values normalized with beta-actin were compared with corresponding values in age-matched controls processed in parallel. In addition, samples of cases with Pick disease (PiD) were examined for comparative purposes.

View Article and Find Full Text PDF

Abnormalities of synapses and impaired synaptic transmission appear to be crucial in the pathogenesis of prion diseases. Excitotoxic mechanisms have been postulated as a major cause of neurodegeneration in these conditions. In this line, previous studies have shown abnormal group 1 metabotropic glutamate receptor signaling in Creutzfeldt-Jakob disease (CJD).

View Article and Find Full Text PDF

Prion diseases are characterized by neuronal loss, astrocytic gliosis, spongiform change, and abnormal protease-resistant prion protein (PrP) deposition. Creutzfeldt-Jakob disease (CJD) is the most prevalent human prion disease, whereas scrapie and bovine spongiform encephalopathy (BSE) are the most common animal prion diseases. Several candidates have been proposed as mediators of degeneration in prion diseases, one of them glutamate.

View Article and Find Full Text PDF

The brain tissue obtained after death is subjected to several circumstances that can affect RNA integrity. The present study has been directed to reveal possible pitfalls and to control RNA normalization in post-mortem samples in order to recognize the limitations and minimize errors when using TaqMan PCR technology. This has been carried out in samples of the frontal cortex in a series of control and diseased cases covering Parkinson's disease, dementia with Lewy bodies pure form and common form, and Alzheimer's disease.

View Article and Find Full Text PDF

Parkinson disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of abnormal alpha-synuclein and ubiquitin in protein aggregates conforming Lewy bodies and Lewy neurites. Ubiquitin C-terminal hydrolase-1 (UCHL-1) disassembles polyubiquitin chains to increase the availability of free monomeric ubiquitin to the ubiquitin proteasome system (UPS) thus favoring protein degradation. Since mutations in the UCHL-1 gene, reducing UPS activity by 50%, have been reported in autosomal dominant PD, and UCHL-1 inhibition results in the formation of alpha-synuclein aggregates in mesencephalic cultured neurons, the present study was initiated to test UCHL-1 mRNA and protein levels in post-mortem frontal cortex (area 8) of PD and DLB cases, compared with age-matched controls.

View Article and Find Full Text PDF

DYRK1A, dual-specificity tyrosine-regulated kinase 1A, maps to human chromosome 21 within the Down syndrome (DS) critical region. Dyrk1 phosphorylates the human microtubule-associated protein tau at Thr212 in vitro, a residue that is phosphorylated in fetal tau and hyper-phosphorylated in Alzheimer disease (AD) and tauopathies, including Pick disease (PiD). Furthermore, phosphorylation of Thr212 primes tau for phosphorylation by glycogen synthase kinase 3 (GSK-3).

View Article and Find Full Text PDF

Expression of CCAAT/enhancer-binding protein beta (C/EBP beta) and growth-arrest DNA damage-inducible 153/C/EBP beta homology protein (GADD153/CHOP) increased after incubation of human neuroblastoma SH-SY5Y cells with a range of dopamine concentrations. Dopamine (100 microM) caused an increase in C/EBP beta expression between 2 and 12 h of treatment, with no evident intracellular morphological changes. Dopamine (500 microM) led to the appearance of autophagic-like vacuoles and a marked increase in GADD153/CHOP between 6 and 24 h of treatment.

View Article and Find Full Text PDF

Deposition of amyloid-beta, the fibrillogenic product of the cell surface protein AbetaPP (amyloid-beta protein precursor), occurs in the cerebral cortex of patients with Dementia with Lewy bodies (DLB). Amyloid deposition, basically in the form of senile plaques, occurs not only in the common form (DLBc), which is defined by changes consistent with diffuse Lewy body disease accompanied by Alzheimer's disease (AD), but also in the pure form (DLBp), in which neurofibrillary tangles are absent. The present study analyses the expression of AbetaPP mRNA isoforms with (AbetaPP751 and AbetaPP770) and without (AbetaPP695) the Kunitz-type serine protease inhibitor (KPI) domain, in the cerebral cortex in DLBc (n=4), DLBp (n=4), Parkinson's disease (PD, n=5), AD (n=3 stages I-IIA, and n=4 stage VC of Braak and Braak), amyloid angiopathy (AA, n=2) and progressive supranuclear palsy (PSP, n=4) compared with age-matched controls (n=6).

View Article and Find Full Text PDF