Publications by authors named "Marta Baiocchi"

Background: Prevention and treatment of metastatic breast cancer (BC) is an unmet clinical need. The retinoic acid derivative fenretinide (FeR) was previously evaluated in Phase I-III clinical trials but, despite its excellent tolerability and antitumor activity in preclinical models, showed limited therapeutic efficacy due to poor bioavailability. We recently generated a new micellar formulation of FeR, Bionanofenretinide (Bio-nFeR) showing enhanced bioavailability, low toxicity, and strong antitumor efficacy on human lung cancer, colorectal cancer, and melanoma xenografts.

View Article and Find Full Text PDF

Metastasis is the primary cause of death in patients with colorectal cancer (CRC), urging the need for preclinical models that recapitulate the metastatic process at the individual patient level. We used an orthotopic patient-derived xenograft (PDX) obtained through the direct implantation of freshly dissociated CRC cells in the colon of immunocompromised mice to model the metastatic process. Ortho-PDX engraftment was associated to a specific set of molecular features of the parental tumor, such as epithelial-to-mesenchymal transition (EMT), TGF-β pathway activation, increased expression of stemness-associated factors and higher numbers of circulating tumor cells (CTCs) clusters expressing the metastatic marker CD44v6.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are responsible for the initiation of primary tumors and for metastasis seeding at distant organs. Therefore, they represent crucial targets for the study and preclinical testing of new antimetastatic approaches. We recently generated a molecularly characterized biobank of colorectal CSCs, isolated from individual patients and cultured in serum-free medium as multicellular spheroids.

View Article and Find Full Text PDF

Background: Circulating tumor cells (CTCs) are responsible for the metastatic dissemination of colorectal cancer (CRC) to the liver, lungs and lymph nodes. CTCs rarity and heterogeneity strongly limit the elucidation of their biological features, as well as preclinical drug sensitivity studies aimed at metastasis prevention.

Methods: We generated organoids from CTCs isolated from an orthotopic CRC xenograft model.

View Article and Find Full Text PDF

Colorectal cancer (CRC) represents one of the most deadly cancers worldwide. Colorectal cancer stem cells (cCSCs) are the driving units of CRC initiation and development. After the concept of cCSC was first formulated in 2007, a huge bulk of research has contributed to expanding its definition, from a cell subpopulation defined by a fixed phenotype in a plastic entity modulated by complex interactions with the tumor microenvironment, in which cell position and niche-driven signals hold a prominent role.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are tumor subpopulations driving disease development, progression, relapse and therapy resistance, and their targeting ensures tumor eradication. CSCs display heterogeneous replication stress (RS), but the functionality/relevance of the RS response (RSR) centered on the ATR-CHK1 axis is debated. Here, we show that the RSR is efficient in primary CSCs from colorectal cancer (CRC-SCs), and describe unique roles for PARP1 and MRE11/RAD51.

View Article and Find Full Text PDF

Severe coronavirus disease 2019 (COVID-19) causes an uncontrolled activation of the innate immune response, resulting in acute respiratory distress syndrome and systemic inflammation. The effects of COVID-19-induced inflammation on cancer cells and their microenvironment are yet to be elucidated. Here, we formulate the hypothesis that COVID-19-associated inflammation may generate a microenvironment favorable to tumor cell proliferation and particularly to the reawakening of dormant cancer cells (DCCs).

View Article and Find Full Text PDF

Background: Quiescent/slow cycling cells have been identified in several tumors and correlated with therapy resistance. However, the features of chemoresistant populations and the molecular factors linking quiescence to chemoresistance are largely unknown.

Methods: A population of chemoresistant quiescent/slow cycling cells was isolated through PKH26 staining (which allows to separate cells on the basis of their proliferation rate) from colorectal cancer (CRC) xenografts and subjected to global gene expression and pathway activation analyses.

View Article and Find Full Text PDF

Background: An increasing number of anticancer agents has been proposed in recent years with the attempt to overcome treatment-resistant cancer cells and particularly cancer stem cells (CSC), the major culprits for tumour resistance and recurrence. However, a huge obstacle to treatment success is the ineffective delivery of drugs within the tumour environment due to limited solubility, short circulation time or inconsistent stability of compounds that, together with concomitant dose-limiting systemic toxicity, contribute to hamper the achievement of therapeutic drug concentrations. The synthetic retinoid Fenretinide (4-hydroxy (phenyl)retinamide; 4-HPR) formerly emerged as a promising anticancer agent based on pre-clinical and clinical studies.

View Article and Find Full Text PDF

Fenretinide is a synthetic retinoid characterized by anticancer activity in preclinical models and favorable toxicological profile, but also by a low bioavailability that hindered its clinical efficacy in former clinical trials. We developed a new formulation of fenretinide complexed with 2-hydroxypropyl-beta-cyclodextrin (nanofenretinide) characterized by an increased bioavailability and therapeutic efficacy. Nanofenretinide was active in cell lines derived from multiple solid tumors, in primary spheroid cultures and in xenografts of lung and colorectal cancer, where it inhibited tumor growth independently from the mutational status of tumor cells.

View Article and Find Full Text PDF

Targeted approaches aiming at modulating NHERF1 activity, rather than its overall expression, would be preferred to preserve the normal functions of this versatile protein. We focused our attention on the NHERF1/PDZ1 domain that governs its membrane recruitment/displacement through a transient phosphorylation switch. We herein report the design and synthesis of novel NHERF1 PDZ1 domain inhibitors.

View Article and Find Full Text PDF

Biobanking of molecularly characterized colorectal cancer stem cells (CSCs) generated from individual patients and growing as spheroids in defined serum-free media offer a fast, feasible, and multi-level approach for the screening of targeted therapies and drug resistance molecular studies. By combining in vitro and in vivo analyses of cetuximab efficacy with genetic data on an ongoing collection of stem cell-enriched spheroids, we describe the identification and preliminary characterization of microsatellite stable (MSS) CSCs that, despite the presence of the KRAS (G12D) mutation, display epidermal growth factor (EGF)-dependent growth and are strongly inhibited by anti-EGF-receptor (EGFR) treatment. In parallel, we detected an increased resistance to anti-EGFR therapy of microsatellite instable (MSI) CSC lines irrespective of KRAS mutational status.

View Article and Find Full Text PDF

Banks of genetically characterized cancer stem cells (CSCs) isolated from individual patients and grown as spheroids offer an invaluable approach to identify genetic determinants of drug resistance versus sensitivity, and to study new stem cell-directed therapies. Here, we describe our standardized procedure for in vitro drug screening on colorectal CSCs, taking irinotecan as an example.

View Article and Find Full Text PDF

8-Oxoguanine, a common mutagenic DNA lesion, generates G:C>T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome.

View Article and Find Full Text PDF

Objective: Cancer stem cells (CSCs) are responsible for tumour formation and spreading, and their targeting is required for tumour eradication. There are limited therapeutic options for advanced colorectal cancer (CRC), particularly for tumours carrying RAS-activating mutations. The aim of this study was to identify novel CSC-targeting strategies.

View Article and Find Full Text PDF

Unlabelled: Colorectal cancer (CRC) therapy mainly relies on the use of conventional chemotherapeutic drugs combined, in a subset of patients, with epidermal growth factor receptor [EGFR]-targeting agents. Although CRC is considered a prototype of a cancer stem cell (CSC)-driven tumor, the effects of both conventional and targeted therapies on the CSC compartment are largely unknown. We have optimized a protocol for colorectal CSC isolation that allowed us to obtain CSC-enriched cultures from primary tumor specimens, with high efficiency.

View Article and Find Full Text PDF

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to exhibit therapeutic activity in cancer. However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic effects of TRAIL could be used for combinatorial therapy.

View Article and Find Full Text PDF

Tumor-initiating cells are responsible for tumor maintenance and relapse in solid and hematologic cancers. Although tumor-initiating cells were initially believed to be mainly quiescent, rapidly proliferating tumorigenic cells were found in breast cancer. In colon cancer, the proliferative activity of the tumorigenic population has not been defined, although it represents an essential parameter for the development of more effective therapeutic strategies.

View Article and Find Full Text PDF

Two large families of retrotransposons, that is, LINE-1 (Long Interspersed Nuclear Elements-1) and endogenous retroviruses, encode reverse transcriptase (RT) proteins in vertebrates. We previously showed that mouse preimplantation embryos are endowed with an endogenous, functional RT activity. Inhibiting that activity by microinjecting antisense oligonucleotides against a highly active LINE-1 family member in mouse oocytes blocked developmental progression between the two- and four-blastomere stages, indicating that LINE-1-encoded RT activity is strictly required at this critical transition in early development.

View Article and Find Full Text PDF

Human cancer stem cells represent promising tools for new approaches to pathway-targeted drug discovery and preclinical screening. Because of their distinctive capability to recapitulate the development of the original tumors in vivo, the study of human cancer stem cells (CSCs) largely relies on models of xenograft transplantation into immunodeficient mice. In this frame, immunity and microenvironment-related issues need careful consideration.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) represent a bone marrow (BM) population, classically defined by five functional properties: extensive proliferation, ability to differentiate into osteoblasts, chondrocytes, adipocytes, and stromal cells-supporting hematopoiesis. However, research progress in this area has been hampered by lack of suitable markers and standardized procedures for MSC isolation. We have isolated a CD146(+) multipotent MSC population from 20 human BM donors displaying the phenotype of self-renewing osteoprogenitors; an extensive 12-week proliferation; and the ability to differentiate in osteoblasts, chondrocytes, adipocytes, and stromal cells supporting hematopoiesis.

View Article and Find Full Text PDF

Hematopoietic (Hem) and endothelial (End) lineages derive from a common progenitor cell, the hemangioblast: specifically, the human cord blood (CB) CD34+KDR+ cell fraction comprises primitive Hem and End cells, as well as hemangioblasts. In humans, the potential therapeutic role of Hem and End progenitors in ischemic heart disease is subject to intense investigation. Particularly, the contribution of these cells to angiogenesis and cardiomyogenesis in myocardial ischemia is not well established.

View Article and Find Full Text PDF

Primordial germ cells are the only stem cells that retain true developmental totipotency after gastrulation, express markers typical of totipotent/pluripotent status and are able both in vivo and in vitro to give rise to pluripotent stem cells as EC and EG cells. We have therefore explored the possibility of the trans-differentiation of mouse PGCs to a myogenic lineage by transplanting them directly or after in vitro culture into a regenerating muscle and by culturing them on monolayers of differentianting muscle cells. The results obtained suggest that mouse PGCs may trans-differentiate into myogenic cells, provided that their somatic environment is preserved.

View Article and Find Full Text PDF

32D cells grown for 1 year in interleukin-3 (IL-3) and granulocyte colony-stimulating factor (G-CSF) generated the 32D Ro cell line which retained the parental mast cell phenotype but lost ability to generate erythroid cells in response to erythropoietin (EPO). In order to clarify the mechanisms underlying such restriction, we compared 32D and 32D Ro cells for their capacity to express erythroid-specific transcription factors (Gata1, Gata2, Scl, Nef2, Eklf, and Id) and the capacity of short exposure to 5-azacytidine (5-AzaC) to reactivate erythroid differentiation potential in 32D Ro cells. By Northern analysis, the two cell lines expressed similar levels of all these genes.

View Article and Find Full Text PDF

We have previously reported the origin of a class of skeletal myogenic cells from explants of dorsal aorta. This finding disagrees with the known origin of all skeletal muscle from somites and has therefore led us to investigate the in vivo origin of these cells and, moreover, whether their fate is restricted to skeletal muscle, as observed in vitro under the experimental conditions used. To address these issues, we grafted quail or mouse embryonic aorta into host chick embryos.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session44s41eevucj8j9d1pv164pvhomhg6593): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once