Publications by authors named "Marta Alejandra Polti"

A restoration strategy was developed for the treatment of two artificial liquid systems (Minimal Medium, MM, and Water Carbon Nitrogen, WCN) contaminated with Cr(VI), lindane (γ-HCH), phenanthrene (Phe), and reactive black 5 (RB5), through the use of an actinobacteria consortium, coupled with a physicochemical treatment using a column filled with nano-scale zero valent iron particles immobilized on dried Macrocystis pyrifera algae biomass. The Sequential Treatment A (ST: physicochemical followed by biological method) removed the three organic compounds with different effectiveness; however, it was very ineffective for Cr(VI) removal. The Sequential Treatment B (ST: biological followed by the physicochemical method) removed the four compounds with variable efficiencies.

View Article and Find Full Text PDF

Phytoremediation techniques have been proposed as ecological methods to clean up contaminated sites. This study is aimed to evaluate the effect of the Streptomyces sp. Waksman & Henrici and Zea mays L.

View Article and Find Full Text PDF

Soils contaminated by organic and inorganic pollutants like Cr(VI) and lindane, is currently a main environmental challenge. Biological strategies, such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, and nanoremediation with nanoscale zero-valent iron (nZVI) are promising approaches for polluted soil health recovery. The combination of different remediation strategies might be key to address this problem.

View Article and Find Full Text PDF

Restoring polluted sites by petroleum hydrocarbons is a challenge because of their complexity and persistence in the environment. The main objective of the present study was to investigate the performance of plant-actinobacteria system for the remediation of crude petroleum and pure-polycyclic aromatic hydrocarbons (PAHs) contaminated soils. The endophytic strain Streptomyces sp.

View Article and Find Full Text PDF

Bioremediation using actinobacterium consortia proved to be a promising alternative for the purification of co-contaminated environments. In this sense, the quadruple consortium composed of Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0 has been able to remove significant levels of Cr(VI) and lindane from anthropogenically contaminated soils.

View Article and Find Full Text PDF

The aims of this study were (1) to isolate new multi-resistant actinobacteria from soil, rhizosphere and plant samples collected from an ancient illegal pesticide storage and (2) to elucidate the effects of these microorganisms developed with maize root exudates on lindane and Cr(VI) removal. Fifty-seven phenotypically different actinobacteria were isolated and four of them, belonging to the genus Streptomyces exhibit tolerance to a mixture of lindane and Cr(VI). Two rhizospheric strains named as Streptomyces sp.

View Article and Find Full Text PDF

Environmental mixed pollution by both organic and inorganic compounds are detected worldwide. Phytoremediation techniques have been proposed as ecofriendly methods for cleaning up polluted sites. Several studies have demonstrated enhanced dissipation of contaminants at the root-soil interface through an increase in microbial activity caused by the release of plant root exudates (REs).

View Article and Find Full Text PDF

Petroleum hydrocarbons are well known by their high toxicity and recalcitrant properties. Their increasing utilization around worldwide led to environmental contamination. Phytoremediation using plant-associated microbe is an interesting approach for petroleum degradation and actinobacteria have a great potential for that.

View Article and Find Full Text PDF

The objective of the present work was to establish optimal biological and physicochemical parameters in order to remove simultaneously lindane and Cr(VI) at high and/or low pollutants concentrations from the soil by an actinobacteria consortium formed by Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0. Also, the final aim was to treat real soils contaminated with Cr(VI) and/or lindane from the Northwest of Argentina employing the optimal biological and physicochemical conditions.

View Article and Find Full Text PDF

Actinobacteria exhibit cosmopolitan distribution since their members are widely distributed in aquatic and terrestrial ecosystems. In the environment they play relevant ecological roles including recycling of substances, degradation of complex polymers, and production of bioactive molecules. Biotechnological potential of actinobacteria in the environment was demonstrated by their ability to remove organic and inorganic pollutants.

View Article and Find Full Text PDF

The aim of this work was to study the impact of environmental factors on the bioremediation of Cr(VI) and lindane contaminated soil, by an actinobacterium, Streptomyces sp. M7, in order to optimize the process. Soil samples were contaminated with 25 µg kg(-1) of lindane and 50 mg kg(-1) of Cr(VI) and inoculated with Streptomyces sp.

View Article and Find Full Text PDF