Off-stoichiometry thiol-ene-epoxy (OSTE+) thermosets show low permeability to gases and little absorption of dissolved molecules, allow direct low-temperature dry bonding without surface treatments, have a low Young's modulus, and can be manufactured via UV polymerisation. For these reasons, OSTE+ thermosets have recently gained attention for the rapid prototyping of microfluidic chips. Moreover, their compatibility with standard clean-room processes and outstanding mechanical properties make OSTE+ an excellent candidate as a novel material for neural implants.
View Article and Find Full Text PDFRetinal prostheses hold the potential for artificial vision in blind people affected by incurable diseases of the outer retinal layer. Available technologies provide only a small field of view: a significant limitation for totally blind people. To overcome this problem, we recently proposed a large and high-density photovoltaic epiretinal device, known as POLYRETINA.
View Article and Find Full Text PDFIntraneural nerve interfaces often operate in a monopolar configuration with a common and distant ground electrode. This configuration leads to a wide spreading of the electric field. Therefore, this approach is suboptimal for intraneural nerve interfaces when selective stimulation is required.
View Article and Find Full Text PDFRetinal stimulation in blind patients evokes the sensation of discrete points of light called phosphenes, which allows them to perform visually guided tasks, such as orientation, navigation, object recognition, object manipulation and reading. However, the clinical benefit of artificial vision in profoundly blind patients is still tenuous, as several engineering and biophysical obstacles keep it far away from natural perception. The relative preservation of the inner retinal neurons in hereditary degenerative retinal diseases, such as retinitis pigmentosa, supports artificial vision through the network-mediated stimulation of retinal ganglion cells (RGCs).
View Article and Find Full Text PDFReducing the mechanical mismatch between the stiffness of a neural implant and the softness of the neural tissue is still an open challenge in neuroprosthetics. The emergence of conductive hydrogels in the last few years has considerably widened the spectrum of possibilities to tackle this issue. Nevertheless, despite the advancements in this field, further improvements in the fabrication of conductive hydrogel-based electrodes are still required.
View Article and Find Full Text PDFObjective: In many applications, multielectrode arrays employed as neural implants require a high density and a high number of electrodes to precisely record and stimulate the activity of the nervous system while preserving the overall size of the array.
Approach: Here we present a multilayer and three-dimensional (3D) electrode array, together with its manufacturing method, enabling a higher electrode density and a more efficient signal transduction with the biological tissue.
Main Results: The 3D structure of the electrode array allows for a multilayer placement of the interconnects within a flexible substrate, it narrows the probe size per the same number of electrodes, and it maintains the electrode contacts at the same level within the tissue.
Retinal prostheses have been developed to fight blindness in people affected by outer retinal layer dystrophies. To date, few hundred patients have received a retinal implant. Inspired by intraocular lenses, we have designed a foldable and photovoltaic wide-field epiretinal prosthesis (named POLYRETINA) capable of stimulating wireless retinal ganglion cells.
View Article and Find Full Text PDFThe proinflammatory cytokine, tumor necrosis factor-α (TNF-α), is elevated in several diseases such as uveitis, rheumatoid arthritis and non-healing chronic wounds. Adding Infliximab, a chimeric IgG1 monoclonal antibody raised against TNF-α, to chronic wound fluid can neutralise human TNF-α, thereby providing a potential therapeutic option for chronic wound healing. However, to avoid the need for repeated application in a clinical setting, and to protect the therapeutic antibody from the hostile environment of the wound, suitable delivery vehicles are required.
View Article and Find Full Text PDFTexturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture.
View Article and Find Full Text PDF