Publications by authors named "MartIn J RamIrez"

The identification of spider species presents many challenges, since in most cases the characters used are from genital structures that are only fully developed in the adult stage, hence the identification of immatures is most often not possible. Additionally, these structures usually also present some intra-specific variability, which in some cases makes the identification of closely related species difficult. The genetic barcode technique (DNA barcodes), based on sequencing of the mitochondrial marker cytochrome c oxidase subunit I (COI ), has proven a useful, complementary tool to overcome these limitations.

View Article and Find Full Text PDF

Spiders evolved a distinctive sperm transfer system, with the male copulatory organs located on the tarsus of the pedipalps. In entelegyne spiders, these organs are usually very complex and consist of various sclerites that not only allow the transfer of the sperm themselves but also provide a mechanical interlock between the male and female genitalia. This interlocking can also involve elements that are not part of the copulatory organ such as the retrolateral tibial apophysis (RTA)-a characteristic of the most diverse group of spiders (RTA clade).

View Article and Find Full Text PDF

Sperm transfer in spiders is achieved by copulatory organs on the male pedipalps (i.e., copulatory bulbs), which can be simple or a complex set of sclerites and membranes.

View Article and Find Full Text PDF

The genus Carteronius Simon, 1897 is transferred from Clubionidae to Corinnidae and recognized as the senior synonym of Mandaneta Strand, 1932, being the oldest available name for the pre-occupied Mandane Karsch, 1880. Upon comparing the respective type specimens, the type species of Carteronius and the type species of Mandaneta were found to represent the same species. Whence the type species Carteronius helluo Simon, 1896, is considered a junior synonym of the type species Mandaneta sudana (Karsch, 1880).

View Article and Find Full Text PDF

Geometric regularity of spider webs has been intensively studied in orb-weaving spiders, although it is not exclusive of orb weavers. Here, we document the geometrically regular, repetitive elements in the webs of the non-orb-weaving groups Leptonetidae and Telemidae for the first time. Similar to orb weavers, we found areas with regularly spaced parallel lines in the webs of , sp.

View Article and Find Full Text PDF

Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus-level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior.

View Article and Find Full Text PDF

Filistatids, the crevice weavers, are an ancient family of cribellate spiders without extant close relatives. As one of the first lineages of araneomorph spiders, they present a complicated mixture of primitive and derived characters that make them a key taxon to elucidate the phylogeny of spiders, as well as the evolution of phenotypic characters in this group. Their moderate diversity (187 species in 19 genera) is distributed mainly in arid and semi-arid subtropical zones of all continents, except Antarctica.

View Article and Find Full Text PDF

A prominent question in animal research is how the evolution of morphology and ecology interacts in the generation of phenotypic diversity. Spiders are some of the most abundant arthropod predators in terrestrial ecosystems and exhibit a diversity of foraging styles. It remains unclear how spider body size and proportions relate to foraging style, and if the use of webs as prey capture devices correlates with changes in body characteristics.

View Article and Find Full Text PDF

The importance of morphology in the phylogenomic era has recently gained attention, but relatively few studies have combined both types of information when inferring phylogenetic relationships. Sanger sequencing legacy data can also be important for understanding evolutionary relationships. The possibility of combining genomic, morphological and Sanger data in one analysis seems compelling, permitting a more complete sampling and yielding a comprehensive view of the evolution of a group.

View Article and Find Full Text PDF

Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages.

View Article and Find Full Text PDF

Zootaxa published more than a thousand papers on Araneae from 2002 to the present, including descriptions of 3,833 new spider species and 177 new genera. Here we summarise the key contributions of Zootaxa to our current knowledge of global spider diversity. We provide a historical account of the researchers that have actively participated as editors, and recognize the more than 1,000 reviewers without whom none of this would have been possible.

View Article and Find Full Text PDF

The genus Meriola Banks currently includes 24 known species of spiders distributed across America, especially in southern South America. They have a nearly straight and narrower posterior eye row compared to other American genera of Trachelidae, and elongated and sharply tipped ventral leg cuspules. The study of specimens of Meriola available in collections revealed two undescribed species, M.

View Article and Find Full Text PDF

Spider web anchors are attachment structures composed of the bi-phasic glue-fiber secretion from the piriform silk glands. The mechanical performance of the anchors strongly correlates with the structural assembly of the silk lines, which makes spider silk anchors an ideal system to study the biomechanical function of extended phenotypes and its evolution. It was proposed that silk anchor function guided the evolution of spider web architectures, but its fine-structural variation and whether its evolution was rather determined by changes of the shape of the spinneret tip or in the innate spinning choreography remained unresolved.

View Article and Find Full Text PDF
Article Synopsis
  • The common ancestor of spiders likely used silk for simple webs, with more complex silk structures evolving in "true spiders."
  • Significant changes in spider respiratory systems occurred alongside this evolution, suggesting a possible connection to silk gland development.
  • Through comprehensive genomic analysis, it's proposed that early web-building spiders developed similar tracheal respiratory systems independently to meet new energy demands for silk spinning.
View Article and Find Full Text PDF

Genital traits are among the fastest to evolve, and the processes that drive their evolution are intensively studied. Spiders are characterized by complex genitalia, but the functional role of the different structures during genital coupling is largely unknown. Members of one of the largest spider groups, the retrolateral tibial apophysis (RTA) clade, are characterized by a RTA on the male palp, which is thought to play a crucial role during genital coupling.

View Article and Find Full Text PDF

Spiders are known for producing specialized fibers. The radial orb-web, for example, contains tough silk used for the web frame and the capture spiral consists of elastic silk, able to stretch when prey impacts the web. In concert, silk proteins and web geometry affects the spider's ability to capture prey.

View Article and Find Full Text PDF

Studies in evolutionary biology and biogeography increasingly rely on the estimation of dated phylogenetic trees using molecular clocks. In turn, the calibration of such clocks is critically dependent on external evidence (i.e.

View Article and Find Full Text PDF

Physical structures built by animals challenge our understanding of biological processes and inspire the development of smart materials and green architecture. It is thus indispensable to understand the drivers, constraints, and dynamics that lead to the emergence and modification of building behavior. Here, we demonstrate that spider web diversification repeatedly followed strikingly similar evolutionary trajectories, guided by physical constraints.

View Article and Find Full Text PDF

Web-building spiders are an extremely diverse predatory group due to their use of physiologically differentiated silk types in webs. Major shifts in silk functional properties are classically attributed to innovations in silk genes and protein expression. Here, we disentangle the effects of spinning behavior on silk performance of the earliest types of capture threads in spider webs for the first time.

View Article and Find Full Text PDF

The atypoid mygalomorphs include spiders from three described families that build a diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs, trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally supported the monophyly of Atypoidea, but prior studies have not sampled all relevant taxa. Here we generated a dataset of ultraconserved element loci for all described atypoid genera, including taxa ( and key to understanding familial monophyly, divergence times, and patterns of entrance web evolution.

View Article and Find Full Text PDF

Lycosids are a diverse family of spiders distributed worldwide. Previous studies recovered some of the deeper splits of the family, but with little support. We present a broad phylogenetic analysis of the Lycosidae including a wide geographic sampling of representatives and all the subfamilies described to date.

View Article and Find Full Text PDF

Six new species of the genus Eutichurus Simon, 1897 are described: E. murgai new species (based on male and female) and E. paredesi new species (male) from Peru; E.

View Article and Find Full Text PDF

While grasslands, one of Earth's major biomes, are known for their close evolutionary ties with ungulate grazers, these habitats are also paramount to the origins and diversification of other animals. Within the primarily South American spider subfamily Amaurobioidinae (Anyphaenidae), several species are found living in the continent's grasslands, with some displaying putative morphological adaptations to dwelling unnoticed in the grass blades. Herein, a dated molecular phylogeny provides the backbone for analyses revealing the ecological and morphological processes behind these spiders' grassland adaptations.

View Article and Find Full Text PDF

Here we show that the most venomous spiders in the world are phylogenetically misplaced. Australian atracine spiders (family Hexathelidae), including the notorious Sydney funnel-web spider Atrax robustus, produce venom peptides that can kill people. Intriguingly, eastern Australian mouse spiders (family Actinopodidae) are also medically dangerous, possessing venom peptides strikingly similar to Atrax hexatoxins.

View Article and Find Full Text PDF