During the course of biopharmaceutical production, heterologous protein expression in Chinese hamster ovary (CHO) cells imposes a high proteostatic burden that requires cellular adaptation. To mitigate such burden, cells utilize the unfolded protein response (UPR), which increases endoplasmic reticulum (ER) capacity to accommodate elevated rates of protein synthesis and folding. In this study, we show that during production the UPR regulates growth factor signaling to modulate growth and protein synthesis.
View Article and Find Full Text PDFFibrosis is the major risk factor associated with morbidity and mortality in patients with non-alcoholic steatohepatitis (NASH)-driven chronic liver disease. Although numerous efforts have been made to identify the mediators of the initiation of liver fibrosis, the molecular underpinnings of fibrosis progression remain poorly understood, and therapies to arrest liver fibrosis progression are elusive. Here, we identify a pathway involving WNT1-inducible signaling pathway protein 1 (WISP1) and myocardin-related transcription factor (MRTF) as a central mechanism driving liver fibrosis progression through the integrin-dependent transcriptional reprogramming of myofibroblast cytoskeleton and motility.
View Article and Find Full Text PDFDendritic cells (DCs) promote adaptive immunity by cross-presenting antigen-based epitopes to CD8+ T cells. DCs process internalized protein antigens into peptides that enter the endoplasmic reticulum (ER), bind to major histocompatibility type I (MHC-I) protein complexes, and are transported to the cell surface for cross-presentation. DCs can exhibit activation of the ER stress sensor IRE1α without ER stress, but the underlying mechanism remains obscure.
View Article and Find Full Text PDFAsthma and inflammatory airway diseases restrict airflow in the lung, compromising gas exchange and lung function. Inhaled corticosteroids (ICSs) can reduce inflammation, control symptoms, and improve lung function; however, a growing number of patients with severe asthma do not benefit from ICS. Using bronchial airway epithelial brushings from patients with severe asthma or primary human cells, we delineated a corticosteroid-driven fibroblast growth factor (FGF)-dependent inflammatory axis, with FGF-responsive fibroblasts promoting downstream granulocyte colony-stimulating factor (G-CSF) production, hyaluronan secretion, and neutrophilic inflammation.
View Article and Find Full Text PDFThe unfolded protein response (UPR) maintains homeostasis of the endoplasmic reticulum (ER). Residing in the ER membrane, the UPR mediator Ire1 deploys its cytoplasmic kinase-endoribonuclease domain to activate the key UPR transcription factor Xbp1 through non-conventional splicing of Xbp1 mRNA. Ire1 also degrades diverse ER-targeted mRNAs through regulated Ire1-dependent decay (RIDD), but how it spares Xbp1 mRNA from this decay is unknown.
View Article and Find Full Text PDFInositol requiring enzyme 1 (IRE1) mitigates endoplasmic-reticulum (ER) stress by orchestrating the unfolded-protein response (UPR). IRE1 spans the ER membrane, and signals through a cytosolic kinase-endoribonuclease module. The endoribonuclease generates the transcription factor XBP1s by intron excision between similar RNA stem-loop endomotifs, and depletes select cellular mRNAs through regulated IRE1-dependent decay (RIDD).
View Article and Find Full Text PDFCancer cells exploit the unfolded protein response (UPR) to mitigate endoplasmic reticulum (ER) stress caused by cellular oncogene activation and a hostile tumor microenvironment (TME). The key UPR sensor IRE1α resides in the ER and deploys a cytoplasmic kinase-endoribonuclease module to activate the transcription factor XBP1s, which facilitates ER-mediated protein folding. Studies of triple-negative breast cancer (TNBC)-a highly aggressive malignancy with a dismal posttreatment prognosis-implicate XBP1s in promoting tumor vascularization and progression.
View Article and Find Full Text PDFDisruption of protein folding in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR)-a signaling network that ultimately determines cell fate. Initially, UPR signaling aims at cytoprotection and restoration of ER homeostasis; that failing, it drives apoptotic cell death. ER stress initiates apoptosis through intracellular activation of death receptor 5 (DR5) independent of its canonical extracellular ligand Apo2L/TRAIL; however, the mechanism underlying DR5 activation is unknown.
View Article and Find Full Text PDFUpon detecting endoplasmic reticulum (ER) stress, the unfolded protein response (UPR) orchestrates adaptive cellular changes to reestablish homeostasis. If stress resolution fails, the UPR commits the cell to apoptotic death. Here we show that in hematopoietic cells, including multiple myeloma (MM), lymphoma, and leukemia cell lines, ER stress leads to caspase-mediated cleavage of the key UPR sensor IRE1 within its cytoplasmic linker region, generating a stable IRE1 fragment comprising the ER-lumenal domain and transmembrane segment (LDTM).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
Multiple myeloma (MM) arises from malignant immunoglobulin (Ig)-secreting plasma cells and remains an incurable, often lethal disease despite therapeutic advances. The unfolded-protein response sensor IRE1α supports protein secretion by deploying a kinase-endoribonuclease module to activate the transcription factor XBP1s. MM cells may co-opt the IRE1α-XBP1s pathway; however, the validity of IRE1α as a potential MM therapeutic target is controversial.
View Article and Find Full Text PDFThe kinases PERK and IRE1 alleviate endoplasmic reticulum (ER) stress by orchestrating the unfolded protein response (UPR). If stress mitigation fails, PERK promotes cell death by activating pro-apoptotic genes, including death receptor 5 (DR5). Conversely, IRE1-which harbors both kinase and endoribonuclease (RNase) modules-blocks apoptosis through regulated IRE1-dependent decay (RIDD) of DR5 mRNA.
View Article and Find Full Text PDFApo2L/TRAIL is a member of the tumor necrosis factor superfamily and an important inducer of apoptosis. Recombinant human (rhu) Apo2L/TRAIL has been attractive as a potential cancer therapeutic because many types of tumor cells are sensitive to its apoptosis-inducing effects. Nonclinical toxicology studies were conducted to evaluate the safety of rhuApo2L/TRAIL for possible use in humans.
View Article and Find Full Text PDFWe developed a strategy for identifying modulators of juxtacrine signaling, triggered by a cell-surface ligand displayed on synthetic lipid bilayers, via cognate receptors on apposed cells. Using readouts for receptor lateral transport and intracellular signaling, we screened a small interfering RNA (siRNA) library and identified specific receptor tyrosine kinases (RTKs) that directly or indirectly modulate apoptosis signaling by a model death ligand through its cognate death receptors. This approach may be broadly useful for studying juxtacrine cell-cell signaling systems.
View Article and Find Full Text PDFFGF receptors (FGFR) are attractive candidate targets for cancer therapy because they are dysregulated in several human malignancies. FGFR2 and FGFR3 can be inhibited potentially without disrupting adult tissue homeostasis. In contrast, blocking the closely related FGFR1 and FGFR4, which regulate specific metabolic functions, carries a greater safety risk.
View Article and Find Full Text PDFHepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) drive cancer through their respective receptors, MET and VEGF receptor 2 (VEGFR2). VEGFR2 inhibits MET by promoting MET dephosphorylation. However, whether MET conversely regulates VEGFR2 remains unknown.
View Article and Find Full Text PDFTNF superfamily death ligands are expressed on the surface of immune cells and can trigger apoptosis in susceptible cancer cells by engaging cognate death receptors. A recombinant soluble protein comprising the ectodomain of Apo2 ligand/TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) has shown remarkable preclinical anticancer activity but lacked broad efficacy in patients, possibly owing to insufficient exposure or potency. We observed that antibody cross-linking substantially enhanced cytotoxicity of soluble Apo2L/TRAIL against diverse cancer cell lines.
View Article and Find Full Text PDFTumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)-driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)-previously implicated in apoptosis suppression-also inhibits necroptotic signaling by TNFα.
View Article and Find Full Text PDFProtein folding by the endoplasmic reticulum (ER) is physiologically critical; its disruption causes ER stress and augments disease. ER stress activates the unfolded protein response (UPR) to restore homeostasis. If stress persists, the UPR induces apoptotic cell death, but the mechanisms remain elusive.
View Article and Find Full Text PDFEpithelial-to-mesenchymal transition (EMT) is a cellular process essential to the development and maintenance of solid tissues. In cancer, EMT suppresses apoptosis, but the mechanisms remain unclear. EMT selectively attenuated apoptosis signaling via the death receptors DR4 and DR5.
View Article and Find Full Text PDFAdjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of vaccine adjuvants activate inflammasome pathways in isolated APCs.
View Article and Find Full Text PDFApoptotic caspase activation mechanisms are well defined, yet inactivation modes remain unclear. The death receptors (DRs), DR4, DR5, and Fas, transduce cell-extrinsic apoptotic signals by recruiting caspase-8 into a death-inducing signaling complex (DISC). At the DISC, Cullin3-dependent polyubiquitination on the small catalytic subunit of caspase-8 augments stimulation.
View Article and Find Full Text PDFThe proapoptotic death receptor DR5 has been studied extensively in cancer cells, but its action in the tumor microenvironment is not well defined. Here, we uncover a role for DR5 signaling in tumor endothelial cells (ECs). We detected DR5 expression in ECs within tumors but not normal tissues.
View Article and Find Full Text PDFAntibodies against epidermal growth factor receptor (EGFR)--cetuximab and panitumumab--are widely used to treat colorectal cancer. Unfortunately, patients eventually develop resistance to these agents. We describe an acquired EGFR ectodomain mutation (S492R) that prevents cetuximab binding and confers resistance to cetuximab.
View Article and Find Full Text PDF