Publications by authors named "Marsich E"

The crosstalk between the cells and the extracellular matrix (ECM) is bidirectional and consists of a pushing/pulling stretch exerted by the cells and a mechanical resistance counteracted by the surrounding microenvironment. It is widely recognized that the stiffness of the ECM, its viscoelasticity, and its overall deformation are the most important traits influencing the response of the cells. Here these three parameters are combined into a concept of elastic energy, which in biological terms represents the mechanical feedback that cells perceive when the ECM is deformed.

View Article and Find Full Text PDF

2D agarose substrates have recently been surprisingly shown to be permissive for cell adhesion, depending on their mechanics and the use of the adhesive proteins of fetal bovine serum (FBS) in the cell culture medium. Here, we elucidate how the cells exhibit two anchoring mechanisms depending on the amount of FBS. Under low FBS conditions, the cells recognize the surface-coupled adhesive sequences of fibronectin via the binding of the heterodimer αβ integrin.

View Article and Find Full Text PDF

Three-dimensional (3D) bioprinting technology enables the controlled deposition of cells and biomaterials (i.e., bioink) to easily create complex 3D biological microenvironments.

View Article and Find Full Text PDF

Spheroids derived from human mesenchymal stem cells (hMSCs) are of limited use for cartilage regeneration, as the viability of the cells progressively decreases during the period required for chondrogenic differentiation (21 days). In this work, spheroids based on hMSCs and a lactose-modified chitosan (CTL) were formed by seeding cells onto an air-dried coating of CTL. The polymer coating can inhibit cell adhesion and it is simultaneously incorporated into spheroid structure.

View Article and Find Full Text PDF

Agarose is a natural polysaccharide known for its ability to form thermoreversible hydrogels. While the effects of curing temperature and polysaccharide concentration on mechanical properties have been discussed in the literature, the role of ionic strength has been less studied. In the present manuscript, we investigate the effects of supporting salt concentration and the role of cation (i.

View Article and Find Full Text PDF

Antibacterial multilayer electrospun matrices based on hyaluronic acid (HA) and a lactose-modified chitosan (CTL) were synthetized (i) by combining electrospun polycaprolactone (PCL) and polysaccharidic matrices in a bilayer device and (ii) by sequentially coating the PCL mat with CTL and HA. In both cases, the antibacterial activity was provided by loading rifampicin within the PCL support. All matrices disclosed suitable morphology and physicochemical properties to be employed as wound dressings.

View Article and Find Full Text PDF
Article Synopsis
  • The cooling rate after heating agarose affects its hydrogel network structure and performance.
  • Adjusting the curing temperature influences surface stiffness and can impact cell behaviors, while not significantly changing other properties like viscoelasticity.
  • This approach allows for the creation of hydrogels with customizable mechanics, making them useful for mechanobiology research.
View Article and Find Full Text PDF

Alginate-based hydrogels with tunable mechanical properties are developed by chemical methylation of the polysaccharide backbone, which was performed either in homogeneous phase (in solution) or in heterogeneous phase (on hydrogels). Nuclear Magnetic Resonance (NMR) and Size Exclusion Chromatography (SEC-MALS) analyses of methylated alginates allow to identify the presence and location of methyl groups on the polysaccharide, and to investigate the influence of methylation on the stiffness of the polymer chains. The methylated polysaccharides are employed for the manufacturing of calcium-reticulated hydrogels for cell growth in 3D.

View Article and Find Full Text PDF

In vitro studies of mesenchymal stem cells (MSCs) differentiation have been predominantly performed with non-physiologically elastic materials. Here we report the effect of different viscoplastic ECM mimics on the osteogenic engagement of MSCs in 2D. We have developed soft hydrogels, composed of a lactose-modified chitosan, using a combination of permanent and temporary cross-links.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new hybrid gold nanoparticle system (DOTA IN-CTL AuNPs) combining a gold salt and an MRI contrast agent for enhanced imaging.
  • The nanoparticles showed biological effectiveness across three different cell lines and maintained stability under physiological conditions while being nontoxic.
  • The study suggests that these nanoparticles have potential for use in both diagnosis and therapy due to their high efficiency and stability.
View Article and Find Full Text PDF

Lactose-modified chitosan (CTL) is sulfated using SO·py or SO·DMF as sulfating agents. The two products are characterized by elemental analysis, FT-IR, H,C-DEPT-HSQC and H,C-HSQC-TOCSY experiments which allow the extent and selectivity of chemical sulfation to be determined. Dynamic Light Scattering shows a pH-dependent association of the sulfated polysaccharides which are described as flexible by the Smidsrød's B parameter and the intrinsic viscosity at infinite ionic strength.

View Article and Find Full Text PDF

Polysaccharide electrospun wound dressings should be an effective strategy in the field of wound care, as they combine an extracellular matrix-like structure with excellent biomimicry. However, their high hydrophilicity and large surface area cause a rapid dissolution in aqueous environments, compromising their clinical employment. In the present paper, electrospun membranes prepared using hyaluronic acid, a bioactive lactose-modified chitosan (CTL), and polyethylene oxide have been crosslinked using glutaraldehyde, genipin, EDC/NHS or thermal treatments, obtaining very poor results in terms of membrane stability.

View Article and Find Full Text PDF

Bioactive and biodegradable porous scaffolds can hasten the healing of bone defects; moreover, patient stem cells seeded onto scaffolds can enhance the osteoinductive and osteoconductive properties of these biomaterials. In this work, porous alginate/hydroxyapatite scaffolds were functionalized with a bioactive coating of a lactose-modified chitosan (CTL). The highly interconnected porous structure of the scaffold was homogeneously coated with CTL.

View Article and Find Full Text PDF

Strain hardening has recently emerged as a near-universal response of biological tissues to mechanical stimulation as well as a powerful regulator of cell fate. Understanding the mechanistic basis for this nonlinear elasticity is crucial for developing bioinspired materials that mimic extracellular matrix mechanics. Here, we show that covalent networks built from highly acetylated chitosans exhibit strain hardening at physiological pH and osmolarity.

View Article and Find Full Text PDF

Nine antibacterial di-methacrylate monomers based on bis-quaternary ammonium salts (bis-QAMs) were synthesized and structurally characterized. The biological activity of the bis-QAMs was tested in terms of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) on different bacterial strains achieving promising results and, in most cases, a complete bactericidal effect using a bis-QAM concentration lower than 1 mg/mL. Two of the structures showed comparable and superior activity against S.

View Article and Find Full Text PDF

In this contribution we report insights on the rheological properties of chia () seed mucilage hydrogels. Creep experiments performed in steady state conditions allowed calculation of Newtonian viscosities for chia hydrogels with different polymer concentration, pointing at inter-chain interactions as the main responsible for the different behavior toward network slipping under constant stress. A combination of oscillatory frequency and stress sweep tests highlighted a moderate effect of temperature in influencing hydrogel mechanics.

View Article and Find Full Text PDF

In this work, we bring back a rapid way to conceive doxorubicin (DOX) hybrid gold nanoparticles, in which DOX and Au(iii) ions were complexed with a hydrochloride-lactose-modified chitosan, named CTL and dicarboxylic acid-terminated polyethylene-glycol (PEG), leading to hybrid polymer-sugar-metal nanoparticles (DOX-AuGSs). All formulations were assessed by spectroscopic techniques (Raman and UV-Vis) and transmission electron microscopy (TEM). To estimate the therapeutic effect of DOX-AuGSs in liver cancer, murine HepG2 cells were used to induce a hepatic carcinoma model in nude mice.

View Article and Find Full Text PDF

Mounting evidences have recognized that dual cross-link and double-network gels can promisingly recapitulate the complex living tissue architecture and overcome mechanical limitations of conventional scaffolds used hitherto in regenerative medicine. Here, dual cross-link gels formed of a bioactive lactose-modified chitosan reticulated via both temporary (boric acid-based) and permanent (genipin-based) cross-linkers are reported. While boric acid rapidly binds to lactitol flanking diols increasing the overall viscosity, a slow temperature-driven genipin binding process takes place allowing for network strengthening.

View Article and Find Full Text PDF

The present manuscript deals with the elucidation of the mechanism of genipin binding by primary amines at neutral pH. UV-VIS and CD measurements both in the presence of oxygen and in oxygen-depleted conditions, combined with computational analyses, led to propose a novel mechanism for the formation of genipin derivatives. The indications collected with chiral and achiral primary amines allowed interpreting the genipin binding to a lactose-modified chitosan (CTL or Chitlac), which is soluble at all pH values.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a chronic disease affecting joint functionality and often managed with hyaluronic acid (HA) administration. In this study, a hydrogel based on a lactose-modified chitosan (CTL) reticulated with boric acid has been developed as a viscosupplement for OA treatment. The rheological characterization allowed to identify a composition whose properties were in line with those of commercial products (in the order of tens of Pascal).

View Article and Find Full Text PDF

A miscibility study between oppositely charged polyelectrolytes, namely hyaluronic acid and a lactose-modified chitosan, is here reported. Experimental variables such as polymers' weight ratios, pH values, ionic strengths and hyaluronic acid molecular weights were considered. Transmittance analyses demonstrated the mutual solubility of the two biopolymers at a neutral pH.

View Article and Find Full Text PDF
Article Synopsis
  • Chitosan derivatives, especially glycosylated ones, are gaining popularity in various fields, including food and biomedicine, due to their potential applications.
  • The review discusses methods to enhance chitosan's properties by adding oligosaccharide side chains and examines how these modifications affect its physical and chemical characteristics.
  • It also highlights potential uses of these advanced modified chitosans in biomaterials and drug delivery systems.
View Article and Find Full Text PDF

Biodegradable membranes for cartilage applications were manufactured starting from polymeric networks of a lactose-modified chitosan (CTL), previously proposed for chondrocytes stimulation. This implantable biomaterial was conceived as a reservoir of a bioactive polymer that could promote the activity of chondrocytes and the healing of cartilage defects. Freeze-drying of reticulated hydrogels enabled to obtain pliable membranes with a homogeneous polymeric texture, as pointed out by scanning electron microscopy analyses.

View Article and Find Full Text PDF