Cellular metabolism converts available nutrients into usable energy and biomass precursors. The process is regulated to facilitate efficient nutrient use and metabolic homeostasis. Feedback inhibition of the first committed step of a pathway by its final product is a classical means of controlling biosynthesis.
View Article and Find Full Text PDFA strain of Halomonas bacteria, GFAJ-1, has been claimed to be able to use arsenate as a nutrient when phosphate is limiting and to specifically incorporate arsenic into its DNA in place of phosphorus. However, we have found that arsenate does not contribute to growth of GFAJ-1 when phosphate is limiting and that DNA purified from cells grown with limiting phosphate and abundant arsenate does not exhibit the spontaneous hydrolysis expected of arsenate ester bonds. Furthermore, mass spectrometry showed that this DNA contains only trace amounts of free arsenate and no detectable covalently bound arsenate.
View Article and Find Full Text PDFAnapleurosis is the filling of the tricarboxylic acid cycle with four-carbon units. The common substrate for both anapleurosis and glucose phosphorylation in bacteria is the terminal glycolytic metabolite phosphoenolpyruvate (PEP). Here we show that Escherichia coli quickly and almost completely turns off PEP consumption upon glucose removal.
View Article and Find Full Text PDFThe phosphotransferase system (PTS), encompassing EI, HPr, and assorted EII proteins, uses phosphoenolpyruvate to import and phosphorylate sugars. A paralog of EIIA of the sugar PTS system known as ptsN has been purported to regulate organic nitrogen source utilization in Escherichia coli K-12. Its known biochemical function, however, relates to potassium homeostasis.
View Article and Find Full Text PDFBecause of the importance of microbes as model organisms, biotechnology tools, and contributors to mammalian and ecosystem metabolism, there has been longstanding interest in measuring their metabolite levels. Current metabolomic methods, involving mass spectrometry-based measurement of cell extracts, enable routine quantitation of most central metabolites. Metabolomics alone, however, is inadequate to understand cellular metabolic activity: Flux measurement and proteomic, genetic, and biochemical approaches with a metabolomics bent are all needed.
View Article and Find Full Text PDFHuman NeuNAc-9-P synthase is a two-domain protein with ability to synthesize both NeuNAc-9-P and KDN-9-P. Its mouse counterpart differs by only 20 out of 359 amino acids but does not produce KDN-9-P. By replacing the AFL domain of the human NeuNAc-9-P synthase which accommodates 12 of these differences, with the mouse AFL domain we examined its importance for the secondary KDN-9-P synthetic activity.
View Article and Find Full Text PDF