The plant cell wall is a major barrier that many plant pathogens must surmount for successful invasion of their plant hosts. Full genome sequencing of a number of plant pathogens has revealed often large, complex, and redundant enzyme systems for degradation of plant cell walls. Recent surveys have noted that plant pathogenic fungi are highly competent producers of lignocellulolytic enzymes, and their enzyme activity patterns reflect host specificity.
View Article and Find Full Text PDFBackground: Genes involved in immune functions, including pathogen recognition and the activation of innate defense pathways, are among the most genetically variable known, and the proteins that they encode are often characterized by high rates of amino acid substitutions, a hallmark of positive selection. The high levels of variation characteristic of immunity genes make them useful tools for conservation genetics. To date, highly variable immunity genes have yet to be found in corals, keystone organisms of the world's most diverse marine ecosystem, the coral reef.
View Article and Find Full Text PDFDspA/E is a type III effector of Erwinia amylovora, the bacterial pathogen that causes fire blight disease in roseaceous plants. This effector is indispensable for disease development, and it is translocated into plant cells. A DspA/E-specific chaperone, DspB/F, is necessary for DspA/E secretion and possibly for its translocation.
View Article and Find Full Text PDF